BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 20536427)

  • 1. Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets.
    Turanov AA; Kehr S; Marino SM; Yoo MH; Carlson BA; Hatfield DL; Gladyshev VN
    Biochem J; 2010 Sep; 430(2):285-93. PubMed ID: 20536427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?
    Lothrop AP; Snider GW; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):554-65. PubMed ID: 24393022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of alternative cytosolic forms and cellular targets of mouse mitochondrial thioredoxin reductase.
    Turanov AA; Su D; Gladyshev VN
    J Biol Chem; 2006 Aug; 281(32):22953-63. PubMed ID: 16774913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of oxidative stress by thioredoxin reductase: Cysteine versus selenocysteine.
    Cunniff B; Snider GW; Fredette N; Stumpff J; Hondal RJ; Heintz NH
    Redox Biol; 2014; 2():475-84. PubMed ID: 24624337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.
    Snider GW; Dustin CM; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):601-9. PubMed ID: 24400600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.
    Su D; Gladyshev VN
    Biochemistry; 2004 Sep; 43(38):12177-88. PubMed ID: 15379556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxin reductase 1 deficiency enhances selenite toxicity in cancer cells via a thioredoxin-independent mechanism.
    Tobe R; Yoo MH; Fradejas N; Carlson BA; Calvo S; Gladyshev VN; Hatfield DL
    Biochem J; 2012 Aug; 445(3):423-30. PubMed ID: 22594686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins.
    Nakao LS; Everley RA; Marino SM; Lo SM; de Souza LE; Gygi SP; Gladyshev VN
    J Biol Chem; 2015 Feb; 290(9):5685-95. PubMed ID: 25561728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase.
    Pader I; Sengupta R; Cebula M; Xu J; Lundberg JO; Holmgren A; Johansson K; Arnér ES
    Proc Natl Acad Sci U S A; 2014 May; 111(19):6964-9. PubMed ID: 24778250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin reductase 1 and NADPH directly protect protein tyrosine phosphatase 1B from inactivation during H
    Dagnell M; Pace PE; Cheng Q; Frijhoff J; Östman A; Arnér ESJ; Hampton MB; Winterbourn CC
    J Biol Chem; 2017 Sep; 292(35):14371-14380. PubMed ID: 28684416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia.
    Floen MJ; Forred BJ; Bloom EJ; Vitiello PF
    Free Radic Biol Med; 2014 Oct; 75():167-77. PubMed ID: 25106706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the thiol/disulfide redox systems of the anaerobe Desulfovibrio vulgaris points out pyruvate:ferredoxin oxidoreductase as a new target for thioredoxin 1.
    Pieulle L; Stocker P; Vinay M; Nouailler M; Vita N; Brasseur G; Garcin E; Sebban-Kreuzer C; Dolla A
    J Biol Chem; 2011 Mar; 286(10):7812-7821. PubMed ID: 21199874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abrogated thioredoxin system causes increased sensitivity to TNF-α-induced apoptosis via enrichment of p-ERK 1/2 in the nucleus.
    Yoo MH; Carlson BA; Gladyshev VN; Hatfield DL
    PLoS One; 2013; 8(9):e71427. PubMed ID: 24039713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.
    Du Y; Zhang H; Zhang X; Lu J; Holmgren A
    J Biol Chem; 2013 Nov; 288(45):32241-32247. PubMed ID: 24062305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity assays of mammalian thioredoxin and thioredoxin reductase: fluorescent disulfide substrates, mechanisms, and use with tissue samples.
    Montano SJ; Lu J; Gustafsson TN; Holmgren A
    Anal Biochem; 2014 Mar; 449():139-46. PubMed ID: 24374250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity within animal thioredoxin reductases. Evidence for alternative first exon splicing.
    Sun QA; Zappacosta F; Factor VM; Wirth PJ; Hatfield DL; Gladyshev VN
    J Biol Chem; 2001 Feb; 276(5):3106-14. PubMed ID: 11060283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillus anthracis thioredoxin systems, characterization and role as electron donors for ribonucleotide reductase.
    Gustafsson TN; Sahlin M; Lu J; Sjöberg BM; Holmgren A
    J Biol Chem; 2012 Nov; 287(47):39686-97. PubMed ID: 23012357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of structural cysteine residues in thioredoxin 1 by aromatic arsenicals enhances cancer cell cytotoxicity caused by the inhibition of thioredoxin reductase 1.
    Zhang X; Lu J; Ren X; Du Y; Zheng Y; Ioannou PV; Holmgren A
    Free Radic Biol Med; 2015 Dec; 89():192-200. PubMed ID: 26169724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro susceptibility of thioredoxins and glutathione to redox modification and aging-related changes in skeletal muscle.
    Dimauro I; Pearson T; Caporossi D; Jackson MJ
    Free Radic Biol Med; 2012 Dec; 53(11):2017-27. PubMed ID: 23022873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenium and the thioredoxin and glutaredoxin systems.
    Björnstedt M; Kumar S; Björkhem L; Spyrou G; Holmgren A
    Biomed Environ Sci; 1997 Sep; 10(2-3):271-9. PubMed ID: 9315320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.