These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20536925)

  • 1. Alternation of agonists and antagonists during turtle hindlimb motor rhythms.
    Stein PS
    Ann N Y Acad Sci; 2010 Jun; 1198():105-18. PubMed ID: 20536925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1999 Jun; 81(6):2977-87. PubMed ID: 10368414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns.
    Robertson GA; Mortin LI; Keifer J; Stein PS
    J Neurophysiol; 1985 Jun; 53(6):1517-34. PubMed ID: 4009231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors.
    Stein PSG
    J Neurophysiol; 2018 Feb; 119(2):422-440. PubMed ID: 29070633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations.
    Currie SN
    J Physiol Paris; 1999; 93(3):199-211. PubMed ID: 10399675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic control of hindlimb motoneurones during three forms of the fictive scratch reflex in the turtle.
    Robertson GA; Stein PS
    J Physiol; 1988 Oct; 404():101-28. PubMed ID: 3253428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
    Degtyarenko AM; Simon ES; Norden-Krichmar T; Burke RE
    J Neurophysiol; 1998 Jan; 79(1):447-63. PubMed ID: 9425213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal control of turtle hindlimb motor rhythms.
    Stein PS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Mar; 191(3):213-29. PubMed ID: 15452660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotransmitters and Motoneuron Contacts of Multifunctional and Behaviorally Specialized Turtle Spinal Cord Interneurons.
    Bannatyne BA; Hao ZZ; Dyer GMC; Watanabe M; Maxwell DJ; Berkowitz A
    J Neurosci; 2020 Mar; 40(13):2680-2694. PubMed ID: 32066584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection.
    Stein PS; McCullough ML; Currie SN
    J Neurosci; 1998 Jan; 18(1):467-79. PubMed ID: 9412523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Premotor spinal network with balanced excitation and inhibition during motor patterns has high resilience to structural division.
    Petersen PC; Vestergaard M; Jensen KH; Berg RW
    J Neurosci; 2014 Feb; 34(8):2774-84. PubMed ID: 24553920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal cord coordination of hindlimb movements in the turtle: intralimb temporal relationships during scratching and swimming.
    Field EC; Stein PS
    J Neurophysiol; 1997 Sep; 78(3):1394-403. PubMed ID: 9310430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of cellular and synaptic variability in the lamprey spinal cord.
    Parker D; Bevan S
    J Neurophysiol; 2007 Jan; 97(1):44-56. PubMed ID: 17021027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Right-left interactions between rostral scratch networks generate rhythmicity in the preenlargement spinal cord of the turtle.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1997 Dec; 78(6):3479-83. PubMed ID: 9405565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular organization of the multipartite central pattern generator for turtle rostral scratch: knee-related interneurons during deletions.
    Stein PS; Daniels-McQueen S; Lai J; Liu Z; Corman TS
    J Neurophysiol; 2016 Jun; 115(6):3130-9. PubMed ID: 27030737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal motor patterns in the turtle.
    Stein PS; McCullough ML; Currie SN
    Ann N Y Acad Sci; 1998 Nov; 860():142-54. PubMed ID: 9928308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle.
    Mortin LI; Stein PS
    J Neurosci; 1989 Jul; 9(7):2285-96. PubMed ID: 2746329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.