BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20536928)

  • 1. Presynaptic inhibition of primary afferents by depolarization: observations supporting nontraditional mechanisms.
    Hochman S; Shreckengost J; Kimura H; Quevedo J
    Ann N Y Acad Sci; 2010 Jun; 1198():140-52. PubMed ID: 20536928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord.
    Carlton SM; Hayes ES
    J Comp Neurol; 1990 Oct; 300(2):162-82. PubMed ID: 2258461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA- and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord.
    Watson AH
    J Comp Neurol; 2003 Sep; 464(4):497-510. PubMed ID: 12900920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bicuculline-sensitive primary afferent depolarization remains after greatly restricting synaptic transmission in the mammalian spinal cord.
    Shreckengost J; Calvo J; Quevedo J; Hochman S
    J Neurosci; 2010 Apr; 30(15):5283-8. PubMed ID: 20392950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence of PAD and presynaptic inhibition of muscle spindle afferents after peripheral nerve crush.
    Enríquez-Denton M; Manjarrez E; Rudomin P
    Brain Res; 2004 Nov; 1027(1-2):179-87. PubMed ID: 15494169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of sensory input to the spinal cord by presynaptic ionotropic glutamate receptors.
    Rustioni A
    Arch Ital Biol; 2005 May; 143(2):103-12. PubMed ID: 16106991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic inhibition in the vertebrate spinal cord revisited.
    Rudomin P; Schmidt RF
    Exp Brain Res; 1999 Nov; 129(1):1-37. PubMed ID: 10550500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA(A) receptor facilitation of neurokinin release from primary afferent terminals in the rat spinal cord.
    Lao L; Marvizón JC
    Neuroscience; 2005; 130(4):1013-27. PubMed ID: 15652997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reticulospinal actions on primary afferent depolarization of cutaneous and muscle afferents in the isolated frog neuraxis.
    González H; Jiménez I; Rudomin P
    Exp Brain Res; 1993; 95(2):261-70. PubMed ID: 8224051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic relationships between hair follicle afferents and neurones expressing GABA and glycine-like immunoreactivity in the spinal cord of the rat.
    Watson AH; Hughes DI; Bazzaz AA
    J Comp Neurol; 2002 Oct; 452(4):367-80. PubMed ID: 12355419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The study of the role of the GABA A and GABA B receptors in presynaptic inhibition of primary afferents of spinal cord of the frog Rana ridibunda].
    Ovsepian SV; Veselkin NP
    Zh Evol Biokhim Fiziol; 2002; 38(6):585-93. PubMed ID: 12625062
    [No Abstract]   [Full Text] [Related]  

  • 12. Local and diffuse mechanisms of primary afferent depolarization and presynaptic inhibition in the rat spinal cord.
    Lidierth M
    J Physiol; 2006 Oct; 576(Pt 1):309-27. PubMed ID: 16873417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA and glycine-like immunoreactivity at axoaxonic synapses on 1a muscle afferent terminals in the spinal cord of the rat.
    Watson AH; Bazzaz AA
    J Comp Neurol; 2001 May; 433(3):335-48. PubMed ID: 11298359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interneurones mediating presynaptic inhibition of group II muscle afferents in the cat spinal cord.
    Jankowska E; Riddell JS
    J Physiol; 1995 Mar; 483 ( Pt 2)(Pt 2):461-71. PubMed ID: 7650613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Neurochemical and ionic mechanisms of dorsal root potentials in the spinal cord of the immature rat].
    Abramets II; Bokholdin IuA; Skrizhevskiĭ IG
    Neirofiziologiia; 1984; 16(6):796-800. PubMed ID: 6097823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynorphin-induced depression of the dorsal root potential in rat spinal cord: a possible mechanism for potentiation of the C-fiber reflex.
    Stewart P; Isaac L
    J Pharmacol Exp Ther; 1991 Nov; 259(2):608-13. PubMed ID: 1682480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterosynaptic modulation of the dorsal root potential in the turtle spinal cord in vitro.
    Russo RE; Delgado-Lezama R; Hounsgaard J
    Exp Brain Res; 2007 Feb; 177(2):275-84. PubMed ID: 16983451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic facilitatory action of locus coeruleus stimulation upon hindlimb sensory impulse transmission in decerebrate cats.
    Fung SJ; Barnes CD
    Arch Ital Biol; 1987 Jul; 125(3):187-200. PubMed ID: 3632183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor alpha3 subunit gene.
    Rajalu M; Müller UC; Caley A; Harvey RJ; Poisbeau P
    Eur J Neurosci; 2009 Dec; 30(12):2284-92. PubMed ID: 20092571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord.
    Sutherland FI; Bannatyne BA; Kerr R; Riddell JS; Maxwell DJ
    J Comp Neurol; 2002 Oct; 452(2):154-62. PubMed ID: 12271489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.