BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20536937)

  • 1. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord.
    Mentis GZ; Alvarez FJ; Shneider NA; Siembab VC; O'Donovan MJ
    Ann N Y Acad Sci; 2010 Jun; 1198():220-30. PubMed ID: 20536937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.
    Siembab VC; Gomez-Perez L; Rotterman TM; Shneider NA; Alvarez FJ
    J Comp Neurol; 2016 Jun; 524(9):1892-919. PubMed ID: 26660356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophin-3 ameliorates sensory-motor deficits in Er81-deficient mice.
    Li LY; Wang Z; Sedý J; Quazi R; Walro JM; Frank E; Kucera J
    Dev Dyn; 2006 Nov; 235(11):3039-50. PubMed ID: 17013886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary afferent synapses on developing and adult Renshaw cells.
    Mentis GZ; Siembab VC; Zerda R; O'Donovan MJ; Alvarez FJ
    J Neurosci; 2006 Dec; 26(51):13297-310. PubMed ID: 17182780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permanent reorganization of Ia afferent synapses on motoneurons after peripheral nerve injuries.
    Alvarez FJ; Bullinger KL; Titus HE; Nardelli P; Cope TC
    Ann N Y Acad Sci; 2010 Jun; 1198():231-41. PubMed ID: 20536938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells.
    Siembab VC; Smith CA; Zagoraiou L; Berrocal MC; Mentis GZ; Alvarez FJ
    J Comp Neurol; 2010 Dec; 518(23):4675-701. PubMed ID: 20963823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Motor grammar of the spinal cord--status and revision].
    Henatsch HD
    Fortschr Neurol Psychiatr; 1986 Sep; 54(9):273-88. PubMed ID: 3019851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle spindle-derived neurotrophin 3 regulates synaptic connectivity between muscle sensory and motor neurons.
    Chen HH; Tourtellotte WG; Frank E
    J Neurosci; 2002 May; 22(9):3512-9. PubMed ID: 11978828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived neurotrophin 3.
    Shneider NA; Mentis GZ; Schustak J; O'Donovan MJ
    J Neurosci; 2009 Apr; 29(15):4719-35. PubMed ID: 19369542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord.
    Sonner PM; Ladle DR
    J Neurophysiol; 2013 Apr; 109(8):2118-28. PubMed ID: 23343895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. II. Loss of functional connectivity with motoneurons.
    Bullinger KL; Nardelli P; Pinter MJ; Alvarez FJ; Cope TC
    J Neurophysiol; 2011 Nov; 106(5):2471-85. PubMed ID: 21832030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task dependent gain regulation of spinal circuits projecting to the human flexor carpi radialis.
    Carroll TJ; Baldwin ER; Collins DF
    Exp Brain Res; 2005 Mar; 161(3):299-306. PubMed ID: 15551085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral specification of Ia synaptic input to motoneurons innervating foreign target muscles.
    Ritter AM; Frank E
    J Neurobiol; 1999 Dec; 41(4):471-81. PubMed ID: 10590171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral target specification of synaptic connectivity of muscle spindle sensory neurons with spinal motoneurons.
    Wenner P; Frank E
    J Neurosci; 1995 Dec; 15(12):8191-8. PubMed ID: 8613753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of fusimotor innervation correlates with group Ia afferents but is independent of neurotrophin-3.
    Ringstedt T; Copray S; Walro J; Kucera J
    Brain Res Dev Brain Res; 1998 Dec; 111(2):295-300. PubMed ID: 9838169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific monosynaptic sensory-motor connections form in the absence of patterned neural activity and motoneuronal cell death.
    Mendelson B; Frank E
    J Neurosci; 1991 May; 11(5):1390-403. PubMed ID: 2027053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The formation of specific synaptic connections between muscle sensory and motor neurons in the absence of coordinated patterns of muscle activity.
    Frank E
    J Neurosci; 1990 Jul; 10(7):2250-60. PubMed ID: 2376773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of postactivation depression of synaptic actions evoked by different afferents and at different locations in the feline spinal cord.
    Hammar I; Slawinska U; Jankowska E
    Exp Brain Res; 2002 Jul; 145(1):126-9. PubMed ID: 12070752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.
    Windhorst U; Kokkoroyiannis T; Laouris Y; Meyer-Lohmann J
    Neuroscience; 1994 Mar; 59(1):149-63. PubMed ID: 8190265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of specific monosynaptic connections between muscle spindle afferents and motoneurons in the mouse.
    Mears SC; Frank E
    J Neurosci; 1997 May; 17(9):3128-35. PubMed ID: 9096147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.