BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20536937)

  • 21. Regeneration of sensory-motor synapses in the spinal cord of the bullfrog.
    Sah DW; Frank E
    J Neurosci; 1984 Nov; 4(11):2784-91. PubMed ID: 6334143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of spinal reflex pathways from muscle afferents to motoneurones in chick embryos devoid of descending inputs.
    Ozaki S; Kudo N
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):137-46. PubMed ID: 7853217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facilitation of antagonist motor output through short-latency sensory pathways during postnatal development in the mouse.
    Sonner PM; Ladle DR
    Neurosci Lett; 2018 May; 674():36-41. PubMed ID: 29526514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of monosynaptic actions of medial gastrocnemius group Ia and group II muscle spindle afferents on triceps surae motoneurons.
    Sypert GW; Fleshman JW; Munson JB
    J Neurophysiol; 1980 Oct; 44(4):726-38. PubMed ID: 6448919
    [No Abstract]   [Full Text] [Related]  

  • 25. Regulation of gephyrin cluster size and inhibitory synaptic currents on Renshaw cells by motor axon excitatory inputs.
    Gonzalez-Forero D; Pastor AM; Geiman EJ; Benítez-Temiño B; Alvarez FJ
    J Neurosci; 2005 Jan; 25(2):417-29. PubMed ID: 15647485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topographic factors in distribution of homonymous group Ia-afferent input to cat medial gastrocnemius motoneurons.
    Lucas SM; Binder MD
    J Neurophysiol; 1984 Jan; 51(1):50-63. PubMed ID: 6229609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convergence of muscle spindle afferents on single neurons of the cat dorsal spino-cerebellar tract and their synaptic efficacy.
    Kröller J; Grüsser OJ
    Brain Res; 1982 Dec; 253(1-2):65-80. PubMed ID: 6295561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excitation and inhibition of Renshaw cells by impulses in peripheral afferent nerve fibers.
    Ryall RW; Piercey MF
    J Neurophysiol; 1971 Mar; 34(2):242-51. PubMed ID: 4251020
    [No Abstract]   [Full Text] [Related]  

  • 29. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents.
    Patel TD; Kramer I; Kucera J; Niederkofler V; Jessell TM; Arber S; Snider WD
    Neuron; 2003 May; 38(3):403-16. PubMed ID: 12741988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crossed disynaptic inhibition of sacral motoneurones.
    Jankowska E; Padel Y; Zarzecki P
    J Physiol; 1978 Dec; 285():425-44. PubMed ID: 745104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion.
    McCrea DA; Pratt CA; Jordan LM
    J Neurophysiol; 1980 Sep; 44(3):475-88. PubMed ID: 7441311
    [No Abstract]   [Full Text] [Related]  

  • 32. Synaptic input from homonymous group I afferents in m. longissimus lumborum motoneurons in the L4 spinal segment in cats.
    Akatani J; Kanda K; Wada N
    Exp Brain Res; 2004 Jun; 156(3):396-8. PubMed ID: 15118795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modifiability of spinal synapses.
    Mendell LM
    Physiol Rev; 1984 Jan; 64(1):260-324. PubMed ID: 6320234
    [No Abstract]   [Full Text] [Related]  

  • 34. Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival.
    Shneider NA; Brown MN; Smith CA; Pickel J; Alvarez FJ
    Neural Dev; 2009 Dec; 4():42. PubMed ID: 19954518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections.
    Mendelsohn AI; Simon CM; Abbott LF; Mentis GZ; Jessell TM
    Neuron; 2015 Jul; 87(1):111-23. PubMed ID: 26094608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Further evidence for synaptic actions of muscle spindle secondaries in the middle lumbar segments of the cat spinal cord.
    Harrison PJ; Jami L; Jankowska E
    J Physiol; 1988 Aug; 402():671-86. PubMed ID: 2976827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of GABAB receptors causes presynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs.
    Peng YY; Frank E
    J Neurosci; 1989 May; 9(5):1502-15. PubMed ID: 2542476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of transient inappropriate sensorimotor synapses in developing rat spinal cords.
    Seebach BS; Ziskind-Conhaim L
    J Neurosci; 1994 Jul; 14(7):4520-8. PubMed ID: 8027791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prenatal exposure to elevated NT3 disrupts synaptic selectivity in the spinal cord.
    Wang Z; Li LY; Taylor MD; Wright DE; Frank E
    J Neurosci; 2007 Apr; 27(14):3686-94. PubMed ID: 17409232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord.
    Imai F; Yoshida Y
    Dev Dyn; 2018 Apr; 247(4):581-587. PubMed ID: 29226492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.