BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20537123)

  • 1. Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata.
    Wisecaver JH; Hackett JD
    BMC Genomics; 2010 Jun; 11():366. PubMed ID: 20537123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-level congruence of Myrionecta rubra prey and Dinophysis species plastid identities as revealed by genetic analyses of isolates from Japanese coastal waters.
    Nishitani G; Nagai S; Baba K; Kiyokawa S; Kosaka Y; Miyamura K; Nishikawa T; Sakurada K; Shinada A; Kamiyama T
    Appl Environ Microbiol; 2010 May; 76(9):2791-8. PubMed ID: 20305031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evidence for plastid robbery (Kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning.
    Takishita K; Koike K; Maruyama T; Ogata T
    Protist; 2002 Sep; 153(3):293-302. PubMed ID: 12389818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from cryptophytes.
    Hongo Y; Yabuki A; Fujikura K; Nagai S
    Sci Rep; 2019 Jun; 9(1):9009. PubMed ID: 31227737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dinoflagellate Amylax triacantha with plastids of the cryptophyte origin: phylogeny, feeding mechanism, and growth and grazing responses.
    Park MG; Kim M; Kang M
    J Eukaryot Microbiol; 2013; 60(4):363-76. PubMed ID: 23631398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dinophysis Ehrenberg (Dinophyceae) in Southern Chile harbours red cryptophyte plastids from Rhodomonas/Storeatula clade.
    Díaz PA; Fernández-Pena C; Pérez-Santos I; Baldrich Á; Díaz M; Rodríguez F
    Harmful Algae; 2020 Nov; 99():101907. PubMed ID: 33218433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra.
    Johnson MD; Oldach D; Delwiche CF; Stoecker DK
    Nature; 2007 Jan; 445(7126):426-8. PubMed ID: 17251979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny.
    Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM
    Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia.
    Janson S
    Environ Microbiol; 2004 Oct; 6(10):1102-6. PubMed ID: 15344936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Plastid Genome of the Cryptomonad Teleaulax amphioxeia.
    Kim JI; Yoon HS; Yi G; Kim HS; Yih W; Shin W
    PLoS One; 2015; 10(6):e0129284. PubMed ID: 26047475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PLASTID DYNAMICS DURING SURVIVAL OF DINOPHYSIS CAUDATA WITHOUT ITS CILIATE PREY(1).
    Park MG; Park JS; Kim M; Yih W
    J Phycol; 2008 Oct; 44(5):1154-63. PubMed ID: 27041712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of molecular probes for dinophysis (dinophyceae) plastid: a tool to predict blooming and explore plastid origin.
    Takahashi Y; Takishita K; Koike K; Maruyama T; Nakayama T; Kobiyama A; Ogata T
    Mar Biotechnol (NY); 2005; 7(2):95-103. PubMed ID: 15776310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear, mitochondrial and plastid gene phylogenies of Dinophysis miles (Dinophyceae): evidence of variable types of chloroplasts.
    Qiu D; Huang L; Liu S; Lin S
    PLoS One; 2011; 6(12):e29398. PubMed ID: 22242118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis.
    Garric S; Ratin M; Marie D; Foulon V; Probert I; Rodriguez F; Six C
    Curr Biol; 2024 Jun; ():. PubMed ID: 38936366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterosigma akashiwo does not serve as prey and chloroplast donor for the toxic dinoflagellate, Dinophysis acuminata.
    Williams AK; Marchand SL; Whereat E; Pettay DT; Coyne KJ
    Harmful Algae; 2022 Jan; 111():102168. PubMed ID: 35016772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny of dinoflagellate plastid genes recently transferred to the nucleus supports a common ancestry with red algal plastid genes.
    Wang Y; Joly S; Morse D
    J Mol Evol; 2008 Feb; 66(2):175-84. PubMed ID: 18253685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DINOPHYSIS CAUDATA (DINOPHYCEAE) SEQUESTERS AND RETAINS PLASTIDS FROM THE MIXOTROPHIC CILIATE PREY MESODINIUM RUBRUM(1).
    Kim M; Nam SW; Shin W; Coats DW; Park MG
    J Phycol; 2012 Jun; 48(3):569-79. PubMed ID: 27011072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prey Lysate Enhances Growth and Toxin Production in an Isolate of
    Gao H; Tong M; An X; Smith JL
    Toxins (Basel); 2019 Jan; 11(1):. PubMed ID: 30669577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte-type plastid in Dinophysis mitra.
    Koike K; Sekiguchi H; Kobiyama A; Takishita K; Kawachi M; Koike K; Ogata T
    Protist; 2005 Aug; 156(2):225-37. PubMed ID: 16171189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential Plastid Retention by the Acquired Phototroph Mesodinium chamaeleon.
    Moeller HV; Johnson MD
    J Eukaryot Microbiol; 2018 Mar; 65(2):148-158. PubMed ID: 28710891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.