These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236 [TBL] [Abstract][Full Text] [Related]
63. Addition of biological functionality to poly(epsilon-caprolactone) films. Prime EL; Hamid ZA; Cooper-White JJ; Qiao GG Biomacromolecules; 2007 Aug; 8(8):2416-21. PubMed ID: 17591749 [TBL] [Abstract][Full Text] [Related]
64. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films. Luan XY; Wang Y; Duan X; Duan QY; Li MZ; Lu SZ; Zhang HX; Zhang XG Biomed Mater; 2006 Dec; 1(4):181-7. PubMed ID: 18458403 [TBL] [Abstract][Full Text] [Related]
65. Thin polymer brush decouples biomaterial's micro-/nanotopology and stem cell adhesion. Klein Gunnewiek M; Benetti EM; Di Luca A; van Blitterswijk CA; Moroni L; Vancso GJ Langmuir; 2013 Nov; 29(45):13843-52. PubMed ID: 24117174 [TBL] [Abstract][Full Text] [Related]
66. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass. Lee HH; Yu HS; Jang JH; Kim HW Acta Biomater; 2008 May; 4(3):622-9. PubMed ID: 18171636 [TBL] [Abstract][Full Text] [Related]
67. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release. Wang Z; Song X; Cui Y; Cheng K; Tian X; Dong M; Liu L J Colloid Interface Sci; 2021 Jul; 593():142-151. PubMed ID: 33744525 [TBL] [Abstract][Full Text] [Related]
68. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells]. Qian Y; Shen Y; Lu Z; Fan Z; Liu T; Zhang J; Zhang F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1365-70. PubMed ID: 19968182 [TBL] [Abstract][Full Text] [Related]
69. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Wang CY; Zhang KH; Fan CY; Mo XM; Ruan HJ; Li FF Acta Biomater; 2011 Feb; 7(2):634-43. PubMed ID: 20849984 [TBL] [Abstract][Full Text] [Related]
70. Study on the preparation of collagen-modified silk fibroin films and their properties. Tang Y; Cao C; Ma X; Chen C; Zhu H Biomed Mater; 2006 Dec; 1(4):242-6. PubMed ID: 18458412 [TBL] [Abstract][Full Text] [Related]
71. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Yang Y; Chen X; Ding F; Zhang P; Liu J; Gu X Biomaterials; 2007 Mar; 28(9):1643-52. PubMed ID: 17188747 [TBL] [Abstract][Full Text] [Related]
72. [Recent progress on silk fibroin as tissue engineering biomaterials]. Wang H; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617 [TBL] [Abstract][Full Text] [Related]
73. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Choi JS; Lee SJ; Christ GJ; Atala A; Yoo JJ Biomaterials; 2008 Jul; 29(19):2899-906. PubMed ID: 18400295 [TBL] [Abstract][Full Text] [Related]
74. A novel device to quantify the mechanical properties of electrospun nanofibers. Fee TJ; Dean DR; Eberhardt AW; Berry JL J Biomech Eng; 2012 Oct; 134(10):104503. PubMed ID: 23083203 [TBL] [Abstract][Full Text] [Related]
75. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Catto V; Farè S; Cattaneo I; Figliuzzi M; Alessandrino A; Freddi G; Remuzzi A; Tanzi MC Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():101-11. PubMed ID: 26046273 [TBL] [Abstract][Full Text] [Related]
76. Preparation and in vivo degradation of controlled biodegradability of electrospun silk fibroin nanofiber mats. Kim JH; Park CH; Lee OJ; Lee JM; Kim JW; Park YH; Ki CS J Biomed Mater Res A; 2012 Dec; 100(12):3287-95. PubMed ID: 22733605 [TBL] [Abstract][Full Text] [Related]
77. Melt-extruded guides for peripheral nerve regeneration. Part I: poly(epsilon-caprolactone). Chiono V; Vozzi G; Vozzi F; Salvadori C; Dini F; Carlucci F; Arispici M; Burchielli S; Di Scipio F; Geuna S; Fornaro M; Tos P; Nicolino S; Audisio C; Perroteau I; Chiaravalloti A; Domenici C; Giusti P; Ciardelli G Biomed Microdevices; 2009 Oct; 11(5):1037-50. PubMed ID: 19479170 [TBL] [Abstract][Full Text] [Related]
78. Tuning size scale and crystallinity of PCL electrospun fibres via solvent permittivity to address hMSC response. Guarino V; Cirillo V; Taddei P; Alvarez-Perez MA; Ambrosio L Macromol Biosci; 2011 Dec; 11(12):1694-705. PubMed ID: 22052674 [TBL] [Abstract][Full Text] [Related]
79. Tunable microphase-regulated silk fibroin/poly (lactic acid) biocomposite materials generated from ionic liquids. Deng Q; Wang F; Gough CR; Hu X Int J Biol Macromol; 2022 Feb; 197():55-67. PubMed ID: 34952094 [TBL] [Abstract][Full Text] [Related]
80. In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Kim SH; Shin C; Min SK; Jung SM; Shin HS Colloids Surf B Biointerfaces; 2012 Feb; 90():113-8. PubMed ID: 22056085 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]