These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20537251)

  • 21. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.
    Zulkifli FH; Jahir Hussain FS; Abdull Rasad MS; Mohd Yusoff M
    J Biomater Appl; 2015 Feb; 29(7):1014-27. PubMed ID: 25186524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells.
    Ye X; Hu X; Wang H; Liu J; Zhao Q
    Acta Biomater; 2012 Mar; 8(3):1057-67. PubMed ID: 22122977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrospun scaffolds from silk fibroin and their cellular compatibility.
    Zhang K; Mo X; Huang C; He C; Wang H
    J Biomed Mater Res A; 2010 Jun; 93(3):976-83. PubMed ID: 19722283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelialization of microporous YIGSR/PEG-modified polyurethaneurea.
    Jun HW; West JL
    Tissue Eng; 2005; 11(7-8):1133-40. PubMed ID: 16144449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering.
    Ku SH; Park CB
    Biomaterials; 2010 Dec; 31(36):9431-7. PubMed ID: 20880578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile fabrication of electrospun regenerated cellulose nanofiber scaffold for potential bone-tissue engineering application.
    Chakraborty PK; Adhikari J; Saha P
    Int J Biol Macromol; 2019 Feb; 122():644-652. PubMed ID: 30391587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration.
    Nagiah N; Madhavi L; Anitha R; Anandan C; Srinivasan NT; Sivagnanam UT
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4444-52. PubMed ID: 23910364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels.
    He S; Xia T; Wang H; Wei L; Luo X; Li X
    Acta Biomater; 2012 Jul; 8(7):2659-69. PubMed ID: 22484697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells.
    Yin W; Venkitachalam SM; Jarrett E; Staggs S; Leventis N; Lu H; Rubenstein DA
    J Biomed Mater Res A; 2010 Mar; 92(4):1431-9. PubMed ID: 19358258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sugar-cane bagasse cellulose-based scaffolds promote multi-cellular interactions, angiogenesis and reduce inflammation for skin tissue regeneration.
    Ramphul H; Gimié F; Andries J; Jhurry D; Bhaw-Luximon A
    Int J Biol Macromol; 2020 Aug; 157():296-310. PubMed ID: 32339588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioactive polymeric systems with platelet antiaggregating activity for the coating of vascular devices.
    Rodríguez G; Fernández-Gutiérrez M; Parra J; López-Bravo A; Honduvilla NG; Buján J; Molina M; Duocastella L; San Román J
    Biomacromolecules; 2010 Oct; 11(10):2740-7. PubMed ID: 20866066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospinning of Biosyn(®)-based tubular conduits: structural, morphological, and mechanical characterizations.
    Thomas V; Donahoe T; Nyairo E; Dean DR; Vohra YK
    Acta Biomater; 2011 May; 7(5):2070-9. PubMed ID: 21232639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.
    Yao Q; Nooeaid P; Detsch R; Roether JA; Dong Y; Goudouri OM; Schubert DW; Boccaccini AR
    J Biomed Mater Res A; 2014 Dec; 102(12):4510-8. PubMed ID: 24677705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogel-electrospun mesh composites for coronary artery bypass grafts.
    McMahon RE; Qu X; Jimenez-Vergara AC; Bashur CA; Guelcher SA; Goldstein AS; Hahn MS
    Tissue Eng Part C Methods; 2011 Apr; 17(4):451-61. PubMed ID: 21083438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paraffin embedding allows effective analysis of proliferation, survival, and immunophenotyping of cells cultured on poly(l-lactic acid) electrospun nanofiber scaffolds.
    Foroni L; Dirani G; Gualandi C; Focarete ML; Pasquinelli G
    Tissue Eng Part C Methods; 2010 Aug; 16(4):751-60. PubMed ID: 19824801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets.
    Busch R; Strohbach A; Rethfeldt S; Walz S; Busch M; Petersen S; Felix S; Sternberg K
    Acta Biomater; 2014 Feb; 10(2):688-700. PubMed ID: 24148751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boron nitride nanotubes included thermally cross-linked gelatin-glucose scaffolds show improved properties.
    Şen Ö; Culha M
    Colloids Surf B Biointerfaces; 2016 Feb; 138():41-9. PubMed ID: 26642075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun nanofibrous cellulose scaffolds with controlled microarchitecture.
    Rodríguez K; Sundberg J; Gatenholm P; Renneckar S
    Carbohydr Polym; 2014 Jan; 100():143-9. PubMed ID: 24188848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.