These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 20537363)

  • 1. On the measurement of frequency-dependent ultrasonic attenuation in strongly heterogeneous materials.
    Molero M; Segura I; Aparicio S; Hernández MG; Izquierdo MA
    Ultrasonics; 2010 Aug; 50(8):824-8. PubMed ID: 20537363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized ultrasonic attenuation measures for non-homogeneous materials.
    Genovés V; Gosálbez J; Carrión A; Miralles R; Payá J
    Ultrasonics; 2016 Feb; 65():345-52. PubMed ID: 26432190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic wave propagation in cementitious materials: a multiphase approach of a self-consistent multiple scattering model.
    Molero M; Segura I; Hernández MG; Izquierdo MA; Anaya JJ
    Ultrasonics; 2011 Jan; 51(1):71-84. PubMed ID: 20619866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of ultrasound attenuation from broadband echo-signals using bandpass filtering.
    Kim H; Zagzebski JA; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1153-9. PubMed ID: 18519224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials.
    Gosálbez J; Wright WMD; Jiang W; Carrión A; Genovés V; Bosch I
    Ultrasonics; 2018 Aug; 88():148-156. PubMed ID: 29654961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic characterization of a fluid layer using a broadband transducer.
    Samet N; Maréchal P; Duflo H
    Ultrasonics; 2012 Mar; 52(3):427-34. PubMed ID: 22071268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of chirp excitation waveform for dual-frequency harmonic contrast detection.
    Shen CC; Chiu YY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2198-206. PubMed ID: 19942507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of broadband temperature-dependent ultrasonic attenuation and dispersion using photoacoustics.
    Treeby BE; Cox BT; Zhang EZ; Patch SK; Beard PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1666-76. PubMed ID: 19686982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.
    Molero M; Segura I; Izquierdo MA; Fuente JV; Anaya JJ
    Ultrasonics; 2009 Feb; 49(2):231-7. PubMed ID: 18840386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of ultrasound pulse propagation in lossy media obeying a frequency power law.
    He P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):114-25. PubMed ID: 18244163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband generation of ultrasonic guided waves using piezoceramics and sub-band decomposition.
    Quaegebeur N; Masson P; Micheau P; Mrad N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):928-38. PubMed ID: 22622977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers.
    Hallez L; Touyeras F; Hihn JY; Klima J
    Ultrason Sonochem; 2007 Sep; 14(6):739-49. PubMed ID: 17347018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic material characterization using large-aperture PVDF receivers.
    Adamowski JC; Buiochi F; Higuti RT
    Ultrasonics; 2010 Feb; 50(2):110-5. PubMed ID: 19853269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement method of particle concentration and acoustic properties in suspension using a focused ultrasonic impulse radiated from a plano-concave transducer.
    Kobayashi T; Tai H; Kato S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e491-6. PubMed ID: 16793082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction for partial reflection in ultrasonic attenuation measurements using contact transducers.
    Treiber M; Kim JY; Jacobs LJ; Qu J
    J Acoust Soc Am; 2009 May; 125(5):2946-53. PubMed ID: 19425638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinary excitation method for pulse compression ultrasound measurements.
    Cowell DM; Freear S
    Ultrasonics; 2008 Apr; 48(2):98-108. PubMed ID: 18191432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for measurement of frequency, modulation characteristics and timer accuracy of ultrasonic therapy equipment.
    Harris GR
    Med Instrum; 1975; 9(4):192-4. PubMed ID: 1143123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using ultrasonic attenuation to monitor slurry mixing in real time.
    Bamberger JA; Greenwood MS
    Ultrasonics; 2004 Apr; 42(1-9):145-8. PubMed ID: 15047276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.