These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20537370)

  • 41. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China.
    Lei B; Huang S; Zhou Y; Wang D; Wang Z
    Chemosphere; 2009 Jun; 76(1):36-42. PubMed ID: 19303134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Persistent organic pollution characterization of sediments in Pearl River estuary.
    Chau KW
    Chemosphere; 2006 Aug; 64(9):1545-9. PubMed ID: 16403562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationship between carbonaceous materials and polychlorinated biphenyls (PCBs) in the sediments of the Danshui River and adjacent coastal areas, Taiwan.
    Hung CC; Gong GC; Jiann KT; Yeager KM; Santschi PH; Wade TL; Sericano JL; Hsieh HL
    Chemosphere; 2006 Nov; 65(9):1452-61. PubMed ID: 16757014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Uptake of carbamazepine by cucumber plants--a case study related to irrigation with reclaimed wastewater.
    Shenker M; Harush D; Ben-Ari J; Chefetz B
    Chemosphere; 2011 Feb; 82(6):905-10. PubMed ID: 21071061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary.
    Wilson B; Chen RF; Cantwell M; Gontz A; Zhu J; Olsen CR
    Mar Pollut Bull; 2009; 59(4-7):207-12. PubMed ID: 19559448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh.
    Ullrich SM; Ilyushchenko MA; Kamberov IM; Tanton TW
    Sci Total Environ; 2007 Aug; 381(1-3):1-16. PubMed ID: 17475310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial distribution of antimony and arsenic levels in Manadas Creek, an urban tributary of the Rio Grande in Laredo, Texas.
    Baeza M; Ren J; Krishnamurthy S; Vaughan TC
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):299-314. PubMed ID: 19629573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mercury contamination history of an estuarine floodplain reconstructed from a 210Pb-dated sediment core (Berg River, South Africa).
    Kading TJ; Mason RP; Leaner JJ
    Mar Pollut Bull; 2009; 59(4-7):116-22. PubMed ID: 19321182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution of tritium in estuarine waters: the role of organic matter.
    Turner A; Millward GE; Stemp M
    J Environ Radioact; 2009 Oct; 100(10):890-5. PubMed ID: 19608308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Second-order advantage with excitation-emission photoinduced fluorimetry for the determination of the antiepileptic carbamazepine in environmental waters.
    Lozano VA; Escandar GM
    Anal Chim Acta; 2013 Jun; 782():37-45. PubMed ID: 23708282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment.
    Jelic A; Michael I; Achilleos A; Hapeshi E; Lambropoulou D; Perez S; Petrovic M; Fatta-Kassinos D; Barcelo D
    J Hazard Mater; 2013 Dec; 263 Pt 1():177-86. PubMed ID: 23972790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization and composition of heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-ping River, Taiwan.
    Doong RA; Lee SH; Lee CC; Sun YC; Wu SC
    Mar Pollut Bull; 2008; 57(6-12):846-57. PubMed ID: 18289608
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China.
    Lin C; Wang Z; He M; Li Y; Liu R; Yang Z
    J Hazard Mater; 2009 Oct; 170(1):278-85. PubMed ID: 19477067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolism of 14C-naphthalene in marine sediments.
    Murthy NB; Sherkhane PD; Kale SP
    Environ Technol; 2002 Nov; 23(11):1271-3. PubMed ID: 12472157
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater.
    Chong MN; Jin B
    J Hazard Mater; 2012 Jan; 199-200():135-42. PubMed ID: 22099943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption of the antiepileptic carbamazepine onto agricultural soils.
    Calisto V; Esteves VI
    J Environ Monit; 2012 May; 14(6):1597-603. PubMed ID: 22543589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbamazepine, carbamazepine epoxide and dihydroxycarbamazepine sorption to soil and occurrence in a wastewater reuse site in Tunisia.
    Fenet H; Mathieu O; Mahjoub O; Li Z; Hillaire-Buys D; Casellas C; Gomez E
    Chemosphere; 2012 Jun; 88(1):49-54. PubMed ID: 22443929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fate of carbamazepine, its metabolites, and lamotrigine in soils irrigated with reclaimed wastewater: Sorption, leaching and plant uptake.
    Paz A; Tadmor G; Malchi T; Blotevogel J; Borch T; Polubesova T; Chefetz B
    Chemosphere; 2016 Oct; 160():22-9. PubMed ID: 27351902
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of carbamazepine from aqueous solution by adsorption on fly ash-amended soil.
    Swarcewicz MK; Sobczak J; Paździoch W
    Water Sci Technol; 2013; 67(6):1396-402. PubMed ID: 23508167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal.
    Bahlmann A; Brack W; Schneider RJ; Krauss M
    Water Res; 2014 Jun; 57():104-14. PubMed ID: 24704908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.