These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 20537705)

  • 1. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels.
    Price GM; Wong KH; Truslow JG; Leung AD; Acharya C; Tien J
    Biomaterials; 2010 Aug; 31(24):6182-9. PubMed ID: 20537705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels.
    Wong KH; Truslow JG; Tien J
    Biomaterials; 2010 Jun; 31(17):4706-14. PubMed ID: 20303168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered microvessels with strong alignment and high lumen density via cell-induced fibrin gel compaction and interstitial flow.
    Morin KT; Dries-Devlin JL; Tranquillo RT
    Tissue Eng Part A; 2014 Feb; 20(3-4):553-65. PubMed ID: 24083839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfabricated blood vessels undergo neoangiogenesis.
    DiVito KA; Daniele MA; Roberts SA; Ligler FS; Adams AA
    Biomaterials; 2017 Sep; 138():142-152. PubMed ID: 28570946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation.
    Katt ME; Linville RM; Mayo LN; Xu ZS; Searson PC
    Fluids Barriers CNS; 2018 Feb; 15(1):7. PubMed ID: 29463314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.
    Buchanan CF; Verbridge SS; Vlachos PP; Rylander MN
    Cell Adh Migr; 2014; 8(5):517-24. PubMed ID: 25482628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma expanders stabilize human microvessels in microfluidic scaffolds.
    Leung AD; Wong KH; Tien J
    J Biomed Mater Res A; 2012 Jul; 100(7):1815-22. PubMed ID: 22489049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cyclic AMP on barrier function of human lymphatic microvascular tubes.
    Price GM; Chrobak KM; Tien J
    Microvasc Res; 2008 May; 76(1):46-51. PubMed ID: 18440562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational simulations predict a key role for oscillatory fluid shear stress in de novo valvular tissue formation.
    Salinas M; Ramaswamy S
    J Biomech; 2014 Nov; 47(14):3517-23. PubMed ID: 25262874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.
    Duan X; Sheardown H
    Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinoic acid modulates the radiosensitivity of head-and-neck squamous carcinoma cells grown in collagen gel.
    Rossi L; Corvò R
    Int J Radiat Oncol Biol Phys; 2002 Aug; 53(5):1319-27. PubMed ID: 12128135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.
    Hu JJ; Liu YC; Chen GW; Wang MX; Lee PY
    Biomech Model Mechanobiol; 2013 Oct; 12(5):849-68. PubMed ID: 23096240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation.
    Stegemann JP; Nerem RM
    Ann Biomed Eng; 2003 Apr; 31(4):391-402. PubMed ID: 12723680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-Engineered Microvasculature to Reperfuse Isolated Renal Glomeruli.
    Chang WG; Fornoni A; Tietjen G; Mendez JJ; Niklason LE; Saltzman WM; Pober JS
    Tissue Eng Part A; 2015 Nov; 21(21-22):2673-9. PubMed ID: 26414101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i.
    Li X; Xu S; He P; Liu Y
    PLoS One; 2015; 10(5):e0126797. PubMed ID: 25965067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow.
    Lee GH; Huang SA; Aw WY; Rathod ML; Cho C; Ligler FS; Polacheck WJ
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34991082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of structural and mechanical anisotropy in fibroblast populated collagen gels.
    Thomopoulos S; Fomovsky GM; Holmes JW
    J Biomech Eng; 2005 Oct; 127(5):742-50. PubMed ID: 16248303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels.
    Henshaw DR; Attia E; Bhargava M; Hannafin JA
    J Orthop Res; 2006 Mar; 24(3):481-90. PubMed ID: 16453340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds.
    Wong KH; Truslow JG; Khankhel AH; Chan KL; Tien J
    J Biomed Mater Res A; 2013 Aug; 101(8):2181-90. PubMed ID: 23281125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of collagen gel stiffness on neurite extension.
    Willits RK; Skornia SL
    J Biomater Sci Polym Ed; 2004; 15(12):1521-31. PubMed ID: 15696797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.