These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 20537735)
1. Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kützing) W. Smith. Branco D; Lima A; Almeida SF; Figueira E Aquat Toxicol; 2010 Aug; 99(2):109-17. PubMed ID: 20537735 [TBL] [Abstract][Full Text] [Related]
2. Toxicity and sorption kinetics of dissolved cadmium and chromium III on tropical freshwater phytoperiphyton in laboratory mesocosm experiments. Bere T; Tundisi JG Sci Total Environ; 2011 Oct; 409(22):4772-80. PubMed ID: 21862440 [TBL] [Abstract][Full Text] [Related]
3. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: exposure to cadmium. Wang MJ; Wang WX Aquat Toxicol; 2011 Jan; 101(2):377-86. PubMed ID: 21216348 [TBL] [Abstract][Full Text] [Related]
4. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure. Wang MJ; Wang WX Aquat Toxicol; 2011 Jan; 101(2):387-95. PubMed ID: 21216349 [TBL] [Abstract][Full Text] [Related]
5. Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. Duong TT; Morin S; Coste M; Herlory O; Feurtet-Mazel A; Boudou A Sci Total Environ; 2010 Jan; 408(3):552-62. PubMed ID: 19896161 [TBL] [Abstract][Full Text] [Related]
6. Biomarkers in aquatic plants: selection and utility. Brain RA; Cedergreen N Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039 [TBL] [Abstract][Full Text] [Related]
7. Intraspecific differences in cadmium tolerance of Nitzschia palea (Kützing) W. Smith: a biochemical approach. Santos J; Almeida SF; Freitas R; Velez C; Esteves S; Figueira E Ecotoxicology; 2016 Sep; 25(7):1305-17. PubMed ID: 27276976 [TBL] [Abstract][Full Text] [Related]
8. Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (Kützing) W. Smith. Figueira E; Freitas R; Guasch H; Almeida SF Ecotoxicology; 2014 Mar; 23(2):285-92. PubMed ID: 24399171 [TBL] [Abstract][Full Text] [Related]
9. Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium. Wang C; Sun Q; Wang L Environ Toxicol; 2009 Jun; 24(3):271-8. PubMed ID: 18655189 [TBL] [Abstract][Full Text] [Related]
10. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Duong TT; Morin S; Herlory O; Feurtet-Mazel A; Coste M; Boudou A Aquat Toxicol; 2008 Oct; 90(1):19-28. PubMed ID: 18801587 [TBL] [Abstract][Full Text] [Related]
11. Phytochelatins in the diatom Phaeodactylum tricornutum Bohlin: an evaluation of their use as biomarkers of metal exposure in marine waters. Morelli E; Fantozzi L Bull Environ Contam Toxicol; 2008 Sep; 81(3):236-41. PubMed ID: 18575794 [TBL] [Abstract][Full Text] [Related]
12. Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses. Perceval O; Couillard Y; Pinel-Alloul B; Giguère A; Campbell PG Aquat Toxicol; 2004 Sep; 69(4):327-45. PubMed ID: 15312717 [TBL] [Abstract][Full Text] [Related]
13. Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Sun Q; Wang XR; Ding SM; Yuan XF Chemosphere; 2005 Jun; 60(1):22-31. PubMed ID: 15910898 [TBL] [Abstract][Full Text] [Related]
14. Cadmium toxicity and bioaccumulation in freshwater biofilms. Morin S; Duong TT; Herlory O; Feurtet-Mazel A; Coste M Arch Environ Contam Toxicol; 2008 Feb; 54(2):173-86. PubMed ID: 17763883 [TBL] [Abstract][Full Text] [Related]
15. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin. Ivanina AV; Cherkasov AS; Sokolova IM J Exp Biol; 2008 Feb; 211(Pt 4):577-86. PubMed ID: 18245635 [TBL] [Abstract][Full Text] [Related]
16. Effects of cadmium stress and sorption kinetics on tropical freshwater periphytic communities in indoor mesocosm experiments. Bere T; Tundisi JG Sci Total Environ; 2012 Aug; 432():103-12. PubMed ID: 22728297 [TBL] [Abstract][Full Text] [Related]
17. Cadmium chelation by frustulins: a novel metal tolerance mechanism in Nitzschia palea (Kützing) W. Smith. Santos J; Almeida SF; Figueira E Ecotoxicology; 2013 Jan; 22(1):166-73. PubMed ID: 23124677 [TBL] [Abstract][Full Text] [Related]
18. Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Morelli E; Cioni P; Posarelli M; Gabellieri E Aquat Toxicol; 2012 Oct; 122-123():153-62. PubMed ID: 22797056 [TBL] [Abstract][Full Text] [Related]
19. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Lavoie M; Le Faucheur S; Fortin C; Campbell PG Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040 [TBL] [Abstract][Full Text] [Related]
20. Short-term metallothionein inductions in the edible cockle Cerastoderma edule after cadmium or mercury exposure: discrepancy between mRNA and protein responses. Paul-Pont I; Gonzalez P; Baudrimont M; Nili H; de Montaudouin X Aquat Toxicol; 2010 May; 97(3):260-7. PubMed ID: 20045202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]