These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20537795)

  • 1. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process.
    Satyawali Y; Schols E; Van Roy S; Dejonghe W; Diels L; Vanbroekhoven K
    J Hazard Mater; 2010 Sep; 181(1-3):217-25. PubMed ID: 20537795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ zinc bioprecipitation by organic substrate injection in a high-flow, poorly reduced aquifer.
    Lookman R; Verbeeck M; Gemoets J; Van Roy S; Crynen J; Lambié B
    J Contam Hydrol; 2013 Jul; 150():25-34. PubMed ID: 23644684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies.
    Al-Degs YS; El-Barghouthi MI; Issa AA; Khraisheh MA; Walker GM
    Water Res; 2006 Aug; 40(14):2645-58. PubMed ID: 16839582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive biosorption of zinc(II) and cobalt(II) in single- and binary-metal systems by aerobic granules.
    Sun XF; Wang SG; Liu XW; Gong WX; Bao N; Gao BY
    J Colloid Interface Sci; 2008 Aug; 324(1-2):1-8. PubMed ID: 18495142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology, mineralogy, and solid-liquid phase separation characteristics of Cu and Zn precipitates produced with biogenic sulfide.
    Villa-Gomez DK; van Hullebusch ED; Maestro R; Farges F; Nikitenko S; Kramer H; Gonzalez-Gil G; Lens PN
    Environ Sci Technol; 2014; 48(1):664-73. PubMed ID: 24164296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions.
    Hong JK; Jo HY; Yun ST
    J Hazard Mater; 2009 May; 164(1):235-46. PubMed ID: 18805638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction-coagulation process in flow conditions.
    Bojic ALj; Bojic D; Andjelkovic T
    J Hazard Mater; 2009 Sep; 168(2-3):813-9. PubMed ID: 19297088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leachability and metal-binding capacity in ageing landfill material.
    Ostman M; Wahlberg O; Mårtensson A
    Waste Manag; 2008; 28(1):142-50. PubMed ID: 17207615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid phase extraction of Co ions using L-tyrosine immobilized on multiwall carbon nanotubes.
    Pacheco PH; Smichowski P; Polla G; Martinez LD
    Talanta; 2009 Jul; 79(2):249-53. PubMed ID: 19559873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloid and heavy metal transport at landfill sites in direct contact with groundwater.
    Baumann T; Fruhstorfer P; Klein T; Niessner R
    Water Res; 2006 Aug; 40(14):2776-86. PubMed ID: 16820185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentrations of cadmium, cobalt, lead, nickel, and zinc in blood and fillets of northern hog sucker (Hypentelium nigricans) from streams contaminated by lead-zinc mining: implications for monitoring.
    Schmitt CJ; Brumbaugh WG; May TW
    Arch Environ Contam Toxicol; 2009 Apr; 56(3):509-24. PubMed ID: 19205790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell.
    Zein R; Suhaili R; Earnestly F; Indrawati ; Munaf E
    J Hazard Mater; 2010 Sep; 181(1-3):52-6. PubMed ID: 20627410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk.
    El-Shafey EI
    J Hazard Mater; 2010 Mar; 175(1-3):319-27. PubMed ID: 19883976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of factors affecting performance of a zeolitic rock barrier to remove zinc from water.
    Lee SH; Jo HY; Yun ST; Lee YJ
    J Hazard Mater; 2010 Mar; 175(1-3):224-34. PubMed ID: 19880248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on removal characteristics of heavy metals from aqueous solution by fly ash.
    Cho H; Oh D; Kim K
    J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of zinc from aqueous solutions to bentonite.
    Kaya A; Oren AH
    J Hazard Mater; 2005 Oct; 125(1-3):183-9. PubMed ID: 16005147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.