These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20537795)

  • 21. Remediation of drinking water contaminated with arsenic by the electro-removal process using different metal electrodes.
    Maldonado-Reyes A; Montero-Ocampo C; Solorza-Feria O
    J Environ Monit; 2007 Nov; 9(11):1241-7. PubMed ID: 17968451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater.
    de Repentigny C; Courcelles B; Zagury GJ
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23205-23214. PubMed ID: 29862480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal power plants ash as sorbent for the removal of Cu(II) and Zn(II) ions from wastewaters.
    Tofan L; Paduraru C; Bilba D; Rotariu M
    J Hazard Mater; 2008 Aug; 156(1-3):1-8. PubMed ID: 18226443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor.
    Remoundaki E; Kousi P; Joulian C; Battaglia-Brunet F; Hatzikioseyian A; Tsezos M
    J Hazard Mater; 2008 May; 153(1-2):514-24. PubMed ID: 17931772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-removal of hexavalent chromium during copper precipitation.
    Sun J; Huang JC
    Water Sci Technol; 2002; 46(4-5):413-9. PubMed ID: 12361041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems.
    Dries J; Bastiaens L; Springael D; Kuypers S; Agathos SN; Diels L
    Water Res; 2005 Sep; 39(15):3531-40. PubMed ID: 16095659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Azocalix[4]pyrrole Amberlite XAD-2: new polymeric chelating resins for the extraction, preconcentration and sequential separation of Cu(II), Zn(II) and Cd(II) in natural water samples.
    Jain VK; Mandalia HC; Gupte HS; Vyas DJ
    Talanta; 2009 Oct; 79(5):1331-40. PubMed ID: 19635367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems.
    Yüzer H; Kara M; Sabah E; Celik MS
    J Hazard Mater; 2008 Feb; 151(1):33-7. PubMed ID: 17611024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peat filter performance under changing environmental conditions.
    Kalmykova Y; Strömvall AM; Rauch S; Morrison G
    J Hazard Mater; 2009 Jul; 166(1):389-93. PubMed ID: 19117671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorption of Zn(II) in aqueous solutions by scoria.
    Kwon JS; Yun ST; Kim SO; Mayer B; Hutcheon I
    Chemosphere; 2005 Sep; 60(10):1416-26. PubMed ID: 16054911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural attenuation processes in two water reservoirs receiving acid mine drainage.
    Sarmiento AM; Olías M; Nieto JM; Cánovas CR; Delgado J
    Sci Total Environ; 2009 Mar; 407(6):2051-62. PubMed ID: 19073338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon.
    Säbel CE; Neureuther JM; Siemann S
    Anal Biochem; 2010 Feb; 397(2):218-26. PubMed ID: 19854146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction.
    Otero-Romaní J; Moreda-Piñeiro A; Bermejo-Barrera P; Martin-Esteban A
    Talanta; 2009 Aug; 79(3):723-9. PubMed ID: 19576436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings.
    Anju M; Banerjee DK
    Chemosphere; 2010 Mar; 78(11):1393-402. PubMed ID: 20106503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uptake of Pb by hydrozincite, Zn5(CO3)2(OH)6--implications for remediation.
    Lattanzi P; Meneghini C; De Giudici G; Podda F
    J Hazard Mater; 2010 May; 177(1-3):1138-44. PubMed ID: 20045250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two routes to vesicle formation: metal-ligand complexation and ionic interactions.
    Wang J; Song A; Jia X; Hao J; Liu W; Hoffmann H
    J Phys Chem B; 2005 Jun; 109(22):11126-34. PubMed ID: 16852357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.