These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 20538056)
1. Carnitine palmitoyltransferase 2: New insights on the substrate specificity and implications for acylcarnitine profiling. Violante S; Ijlst L; van Lenthe H; de Almeida IT; Wanders RJ; Ventura FV Biochim Biophys Acta; 2010 Sep; 1802(9):728-32. PubMed ID: 20538056 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Violante S; Ijlst L; Ruiter J; Koster J; van Lenthe H; Duran M; de Almeida IT; Wanders RJ; Houten SM; Ventura FV Biochim Biophys Acta; 2013 Jun; 1832(6):773-9. PubMed ID: 23485643 [TBL] [Abstract][Full Text] [Related]
3. Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient. Violante S; Ijlst L; Te Brinke H; Koster J; Tavares de Almeida I; Wanders RJ; Ventura FV; Houten SM Biochim Biophys Acta; 2013 Sep; 1831(9):1467-74. PubMed ID: 23850792 [TBL] [Abstract][Full Text] [Related]
4. Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. Violante S; Ijlst L; Te Brinke H; Tavares de Almeida I; Wanders RJ; Ventura FV; Houten SM FASEB J; 2013 May; 27(5):2039-44. PubMed ID: 23322164 [TBL] [Abstract][Full Text] [Related]
5. Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency. Pereyra AS; Harris KL; Soepriatna AH; Waterbury QA; Bharathi SS; Zhang Y; Fisher-Wellman KH; Goergen CJ; Goetzman ES; Ellis JM J Lipid Res; 2021; 62():100069. PubMed ID: 33757734 [TBL] [Abstract][Full Text] [Related]
7. Metabolic profiling analysis upon acylcarnitines in tissues of hepatocellular carcinoma revealed the inhibited carnitine shuttle system caused by the downregulated carnitine palmitoyltransferase 2. Lu X; Zhang X; Zhang Y; Zhang K; Zhan C; Shi X; Li Y; Zhao J; Bai Y; Wang Y; Nie H; Li Y Mol Carcinog; 2019 May; 58(5):749-759. PubMed ID: 30604893 [TBL] [Abstract][Full Text] [Related]
8. Differences between acylcarnitine profiles in plasma and bloodspots. de Sain-van der Velden MG; Diekman EF; Jans JJ; van der Ham M; Prinsen BH; Visser G; Verhoeven-Duif NM Mol Genet Metab; 2013; 110(1-2):116-21. PubMed ID: 23639448 [TBL] [Abstract][Full Text] [Related]
9. Loss of Muscle Carnitine Palmitoyltransferase 2 Prevents Diet-Induced Obesity and Insulin Resistance despite Long-Chain Acylcarnitine Accumulation. Pereyra AS; Rajan A; Ferreira CR; Ellis JM Cell Rep; 2020 Nov; 33(6):108374. PubMed ID: 33176143 [TBL] [Abstract][Full Text] [Related]
10. Characterization of L-aminocarnitine, an inhibitor of fatty acid oxidation. Chegary M; Te Brinke H; Doolaard M; Ijlst L; Wijburg FA; Wanders RJ; Houten SM Mol Genet Metab; 2008 Apr; 93(4):403-10. PubMed ID: 18077198 [TBL] [Abstract][Full Text] [Related]
11. Quantitation of acyl-CoA and acylcarnitine esters accumulated during abnormal mitochondrial fatty acid oxidation. Kler RS; Jackson S; Bartlett K; Bindoff LA; Eaton S; Pourfarzam M; Frerman FE; Goodman SI; Watmough NJ; Turnbull DM J Biol Chem; 1991 Dec; 266(34):22932-8. PubMed ID: 1744086 [TBL] [Abstract][Full Text] [Related]
12. Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain. Jernberg JN; Bowman CE; Wolfgang MJ; Scafidi S J Neurochem; 2017 Aug; 142(3):407-419. PubMed ID: 28512781 [TBL] [Abstract][Full Text] [Related]
13. Effects of fasting, feeding and exercise on plasma acylcarnitines among subjects with CPT2D, VLCADD and LCHADD/TFPD. Elizondo G; Matern D; Vockley J; Harding CO; Gillingham MB Mol Genet Metab; 2020; 131(1-2):90-97. PubMed ID: 32928639 [TBL] [Abstract][Full Text] [Related]
14. Broad specificity of carnitine palmitoyltransferase II towards long-chain acyl-CoA beta-oxidation intermediates and its practical approach to the synthesis of various long-chain acylcarnitines. Ventura FV; Costa CG; IJlst L; Dorland L; Duran M; Jakobs C; de Almeida IT; Wanders RJ J Inherit Metab Dis; 1997 Jul; 20(3):423-6. PubMed ID: 9266372 [No Abstract] [Full Text] [Related]
15. Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism. Sauer SW; Okun JG; Hoffmann GF; Koelker S; Morath MA Biochim Biophys Acta; 2008 Oct; 1777(10):1276-82. PubMed ID: 18582432 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Metabolic Defects in Fatty Acid Oxidation Using Peripheral Blood Mononuclear Cells Loaded with Deuterium-Labeled Fatty Acids. Yuasa M; Hata I; Sugihara K; Isozaki Y; Ohshima Y; Hara K; Tajima G; Shigematsu Y Dis Markers; 2019; 2019():2984747. PubMed ID: 30881520 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts. Roe DS; Yang BZ; Vianey-Saban C; Struys E; Sweetman L; Roe CR Mol Genet Metab; 2006 Jan; 87(1):40-7. PubMed ID: 16297647 [TBL] [Abstract][Full Text] [Related]
19. Non-invasive test using palmitate in patients with suspected fatty acid oxidation defects: disease-specific acylcarnitine patterns can help to establish the diagnosis. Janzen N; Hofmann AD; Schmidt G; Das AM; Illsinger S Orphanet J Rare Dis; 2017 Dec; 12(1):187. PubMed ID: 29268767 [TBL] [Abstract][Full Text] [Related]
20. Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders. van Eunen K; Volker-Touw CM; Gerding A; Bleeker A; Wolters JC; van Rijt WJ; Martines AM; Niezen-Koning KE; Heiner RM; Permentier H; Groen AK; Reijngoud DJ; Derks TG; Bakker BM BMC Biol; 2016 Dec; 14(1):107. PubMed ID: 27927213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]