These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 20538319)

  • 1. Distribution and mobility of arsenic in soils of a mining area (Western Spain).
    García-Sánchez A; Alonso-Rojo P; Santos-Francés F
    Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of irrigation with arsenic-rich groundwater on soils and crops.
    Moyano A; Garcia-Sanchez A; Mayorga P; Anawar HM; Alvarez-Ayuso E
    J Environ Monit; 2009 Mar; 11(3):498-502. PubMed ID: 19280028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia.
    Sultan K
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.
    Maramba NP; Reyes JP; Francisco-Rivera AT; Panganiban LC; Dioquino C; Dando N; Timbang R; Akagi H; Castillo MT; Quitoriano C; Afuang M; Matsuyama A; Eguchi T; Fuchigami Y
    J Environ Manage; 2006 Oct; 81(2):135-45. PubMed ID: 16949727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China.
    Xiao T; Guha J; Boyle D; Liu CQ; Chen J
    Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China.
    Liao XY; Chen TB; Xie H; Liu YR
    Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China.
    Zhang G; Liu CQ; Liu H; Hu J; Han G; Li L
    J Environ Monit; 2009 Sep; 11(9):1570-8. PubMed ID: 19724824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.
    Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M
    Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of mining activities in alteration of As levels in the surrounding ecosystems: an encompassing risk assessment and evaluation of remediation strategies.
    Susaya J; Kim KH; Jung MC
    J Hazard Mater; 2010 Oct; 182(1-3):427-38. PubMed ID: 20638788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system.
    Tighe M; Ashley P; Lockwood P; Wilson S
    Sci Total Environ; 2005 Jul; 347(1-3):175-86. PubMed ID: 16084977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities.
    Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS
    Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility.
    Bauer M; Fulda B; Blodau C
    Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils.
    Rodrigues SM; Henriques B; Coimbra J; Ferreira da Silva E; Pereira ME; Duarte AC
    Chemosphere; 2010 Mar; 78(11):1301-12. PubMed ID: 20122712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spreading of pollutants from alkaline mine drainage. Rodalquilar mining district (SE Spain).
    González V; García I; del Moral F; de Haro S; Sánchez JA; Simón M
    J Environ Manage; 2012 Sep; 106():69-74. PubMed ID: 22564458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM; Kim M; Hyun S; Lee SH
    Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils.
    Anawar HM; Garcia-Sanchez A; Santa Regina I
    Chemosphere; 2008 Feb; 70(8):1459-67. PubMed ID: 17936872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh.
    Saha GC; Ali MA
    Sci Total Environ; 2007 Jul; 379(2-3):180-9. PubMed ID: 17067657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.