These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 20538420)
1. Non-destructive determination of TiO2 concentration in cream formulation using Raman spectroscopy. Oh C; Yoon S; Kim E; Han J; Chung H; Jeong HJ J Pharm Biomed Anal; 2010 Nov; 53(3):762-6. PubMed ID: 20538420 [TBL] [Abstract][Full Text] [Related]
2. Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy. Kim J; Noh J; Chung H; Woo YA; Kemper MS; Lee Y Anal Chim Acta; 2007 Aug; 598(2):280-5. PubMed ID: 17719903 [TBL] [Abstract][Full Text] [Related]
3. Reliable and fast quantitative analysis of active ingredient in pharmaceutical suspension using Raman spectroscopy. Park SC; Kim M; Noh J; Chung H; Woo Y; Lee J; Kemper MS Anal Chim Acta; 2007 Jun; 593(1):46-53. PubMed ID: 17531823 [TBL] [Abstract][Full Text] [Related]
4. A new non-invasive, quantitative Raman technique for the determination of an active ingredient in pharmaceutical liquids by direct measurement through a plastic bottle. Kim M; Chung H; Woo Y; Kemper MS Anal Chim Acta; 2007 Mar; 587(2):200-7. PubMed ID: 17386774 [TBL] [Abstract][Full Text] [Related]
5. Comparison of near-infrared and Raman spectroscopy for the determination of the density of polyethylene pellets. Kim M; Noh J; Chung H Anal Chim Acta; 2009 Jan; 632(1):122-7. PubMed ID: 19100891 [TBL] [Abstract][Full Text] [Related]
6. New reliable Raman collection system using the wide area illumination (WAI) scheme combined with the synchronous intensity correction standard for the analysis of pharmaceutical tablets. Kim M; Chung H; Woo Y; Kemper M Anal Chim Acta; 2006 Oct; 579(2):209-16. PubMed ID: 17723745 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of a wide area illumination scheme for reliable Raman measurement of petroleum products. Kim J; Han J; Noh J; Chung H Appl Spectrosc; 2007 Jul; 61(7):686-93. PubMed ID: 17697461 [TBL] [Abstract][Full Text] [Related]
8. Robust Raman measurement of hydrogen peroxide directly through plastic containers under the change of bottle position and its long-term prediction reproducibility. Kim M; Chung H; Kemper MS J Pharm Biomed Anal; 2008 Nov; 48(3):592-7. PubMed ID: 18619757 [TBL] [Abstract][Full Text] [Related]
9. Direct on-line Raman measurement of flying solid samples: determination of polyethylene pellet density. Kim J; Kim Y; Chung H Talanta; 2011 Jan; 83(3):879-84. PubMed ID: 21147332 [TBL] [Abstract][Full Text] [Related]
10. Transmission Raman measurement directly through packed corn kernels to improve sample representation and accuracy of compositional analysis. Shin K; Chung H; Kwak CW Analyst; 2012 Aug; 137(16):3690-6. PubMed ID: 22766528 [TBL] [Abstract][Full Text] [Related]
11. Particle size determination of sunscreens formulated with various forms of titanium dioxide. Wokovich A; Tyner K; Doub W; Sadrieh N; Buhse LF Drug Dev Ind Pharm; 2009 Oct; 35(10):1180-9. PubMed ID: 19555241 [TBL] [Abstract][Full Text] [Related]
12. Nondestructive determination of the ambroxol content in tablets by Raman spectroscopy. Hwang MS; Cho S; Chung H; Woo YA J Pharm Biomed Anal; 2005 Jun; 38(2):210-5. PubMed ID: 15925210 [TBL] [Abstract][Full Text] [Related]
13. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. Zhang J; Li M; Feng Z; Chen J; Li C J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of a direct, non-destructive quantitative method for medroxyprogesterone acetate in a pharmaceutical suspension using FT-Raman spectroscopy. De Beer TR; Vergote GJ; Baeyens WR; Remon JP; Vervaet C; Verpoort F Eur J Pharm Sci; 2004 Dec; 23(4-5):355-62. PubMed ID: 15567288 [TBL] [Abstract][Full Text] [Related]
15. Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Jarvis RM; Brooker A; Goodacre R Anal Chem; 2004 Sep; 76(17):5198-202. PubMed ID: 15373461 [TBL] [Abstract][Full Text] [Related]
16. Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles. Kahraman M; Yazici MM; Sahin F; Bayrak OF; Culha M Appl Spectrosc; 2007 May; 61(5):479-85. PubMed ID: 17555616 [TBL] [Abstract][Full Text] [Related]
17. Wide area coverage Raman spectroscopy for reliable quantitative analysis and its applications. Shin K; Chung H Analyst; 2013 Jun; 138(12):3335-46. PubMed ID: 23636144 [TBL] [Abstract][Full Text] [Related]
18. Room temperature synthesized rutile TiO(2) nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Liu P; Cai W; Fang M; Li Z; Zeng H; Hu J; Luo X; Jing W Nanotechnology; 2009 Jul; 20(28):285707. PubMed ID: 19550020 [TBL] [Abstract][Full Text] [Related]
19. Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy. Eliasson C; Macleod NA; Jayes LC; Clarke FC; Hammond SV; Smith MR; Matousek P J Pharm Biomed Anal; 2008 Jun; 47(2):221-9. PubMed ID: 18296001 [TBL] [Abstract][Full Text] [Related]
20. Development of a particle-settling tolerant transmission Raman scheme for analysis of suspension samples. Shin K; Duy PK; Park S; Woo YA; Chung H Analyst; 2014 Jun; 139(11):2813-22. PubMed ID: 24736984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]