BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20538450)

  • 1. Polymeric sensing system molecularly imprinted towards enhanced adhesion of Saccharomyces cerevisiae.
    Hachułka K; Lekka M; Okrajni J; Ambroziak W; Wandelt B
    Biosens Bioelectron; 2010 Sep; 26(1):50-4. PubMed ID: 20538450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reading microdots of a molecularly imprinted polymer by surface-enhanced Raman spectroscopy.
    Kantarovich K; Tsarfati I; Gheber LA; Haupt K; Bar I
    Biosens Bioelectron; 2010 Oct; 26(2):809-14. PubMed ID: 20621465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensors for bioanalytes by imprinting--polymers mimicking both biological receptors and the corresponding bioparticles.
    Jenik M; Seifner A; Krassnig S; Seidler K; Lieberzeit PA; Dickert FL; Jungbauer C
    Biosens Bioelectron; 2009 Sep; 25(1):9-14. PubMed ID: 19231153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted cell adhesion on selectively micropatterned polymer arrays on a poly(dimethylsiloxane) surface.
    Tang L; Min J; Lee EC; Kim JS; Lee NY
    Biomed Microdevices; 2010 Feb; 12(1):13-21. PubMed ID: 19757071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quartz crystal microbalance for the detection of carbaryl using molecularly imprinted polymers as recognition element.
    Yao W; Gao Z; Cheng Y
    J Sep Sci; 2009 Oct; 32(19):3334-9. PubMed ID: 19722172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element.
    Yan S; Fang Y; Gao Z
    Biosens Bioelectron; 2007 Jan; 22(6):1087-91. PubMed ID: 16621501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of molecularly imprinted polymer microarray on a chip by mid-infrared laser pulse initiated polymerisation.
    Henry OY; Piletsky SA; Cullen DC
    Biosens Bioelectron; 2008 Jul; 23(12):1769-75. PubMed ID: 18378439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the rational development of molecularly imprinted polymers: 1H NMR studies on hydrophobicity and ion-pair interactions as driving forces for selectivity.
    O'Mahony J; Molinelli A; Nolan K; Smyth MR; Mizaikoff B
    Biosens Bioelectron; 2005 Mar; 20(9):1884-93. PubMed ID: 15681210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: a novel strategy for MIP sensors.
    Yang Y; Yi C; Luo J; Liu R; Liu J; Jiang J; Liu X
    Biosens Bioelectron; 2011 Jan; 26(5):2607-12. PubMed ID: 21159505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer.
    Zhou WH; Tang SF; Yao QH; Chen FR; Yang HH; Wang XR
    Biosens Bioelectron; 2010 Oct; 26(2):585-9. PubMed ID: 20685108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of yeast imprinting in biotechnology and process control.
    Seidler K; Lieberzeit PA; Dickert FL
    Analyst; 2009 Feb; 134(2):361-6. PubMed ID: 19173063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents.
    Castell OK; Allender CJ; Barrow DA
    Biosens Bioelectron; 2006 Oct; 22(4):526-33. PubMed ID: 16938448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylalanine detection using matrix assisted pulsed laser evaporation of molecularly imprinted amphiphilic block copolymer films.
    Casey CN; Campbell SE; Gibson UJ
    Biosens Bioelectron; 2010 Oct; 26(2):703-9. PubMed ID: 20655191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ sensing and manipulation of molecules in biological samples using a nanorobotic system.
    Li G; Xi N; Wang DH
    Nanomedicine; 2005 Mar; 1(1):31-40. PubMed ID: 17292055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: influence of yeast and solid surface properties.
    Guillemot G; Vaca-Medina G; Martin-Yken H; Vernhet A; Schmitz P; Mercier-Bonin M
    Colloids Surf B Biointerfaces; 2006 May; 49(2):126-35. PubMed ID: 16621474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecularly imprinted polymeric microspheres for determination of bovine serum albumin based on flow injection chemiluminescence sensor.
    Yu J; Wan F; Zhang C; Yan M; Zhang X; Wang S
    Biosens Bioelectron; 2010 Oct; 26(2):632-7. PubMed ID: 20678921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.
    Reimhult K; Yoshimatsu K; Risveden K; Chen S; Ye L; Krozer A
    Biosens Bioelectron; 2008 Jul; 23(12):1908-14. PubMed ID: 18374557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases.
    da Silva MS; Vão ER; Temtem M; Mafra L; Caldeira J; Aguiar-Ricardo A; Casimiro T
    Biosens Bioelectron; 2010 Mar; 25(7):1742-7. PubMed ID: 20096557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic molecularly imprinted nanoparticles for recognition of lysozyme.
    Jing T; Du H; Dai Q; Xia H; Niu J; Hao Q; Mei S; Zhou Y
    Biosens Bioelectron; 2010 Oct; 26(2):301-6. PubMed ID: 20829022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains.
    Yoshimoto K; Ichino M; Nagasaki Y
    Lab Chip; 2009 May; 9(9):1286-9. PubMed ID: 19370250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.