These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20538649)

  • 1. Growth-induced mass flows in fungal networks.
    Heaton LL; López E; Maini PK; Fricker MD; Jones NS
    Proc Biol Sci; 2010 Nov; 277(1698):3265-74. PubMed ID: 20538649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advection, diffusion, and delivery over a network.
    Heaton LL; López E; Maini PK; Fricker MD; Jones NS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021905. PubMed ID: 23005783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological solutions to transport network design.
    Bebber DP; Hynes J; Darrah PR; Boddy L; Fricker MD
    Proc Biol Sci; 2007 Sep; 274(1623):2307-15. PubMed ID: 17623638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing.
    Wood J; Tordoff GM; Jones TH; Boddy L
    Mycol Res; 2006 Aug; 110(Pt 8):985-93. PubMed ID: 16891104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions.
    Khalil H; Legin E; Kurek B; Perre P; Taidi B
    BMC Microbiol; 2021 Nov; 21(1):318. PubMed ID: 34784888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal network responses to grazing.
    Boddy L; Wood J; Redman E; Hynes J; Fricker MD
    Fungal Genet Biol; 2010 Jun; 47(6):522-30. PubMed ID: 20144724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient movement and mycelial reorganization in established systems of Phanerochaete velutina, following arrival of colonized wood resources.
    Harris MJ; Boddy L
    Microb Ecol; 2005 Aug; 50(2):141-51. PubMed ID: 16211328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mycelium as a Network.
    Fricker MD; Heaton LLM; Jones NS; Boddy L
    Microbiol Spectr; 2017 May; 5(3):. PubMed ID: 28524023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola).
    Bretherton S; Tordoff GM; Jones TH; Boddy L
    FEMS Microbiol Ecol; 2006 Oct; 58(1):33-40. PubMed ID: 16958906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.
    Tlalka M; Bebber DP; Darrah PR; Watkinson SC; Fricker MD
    Fungal Genet Biol; 2008 Jul; 45(7):1111-21. PubMed ID: 18467134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources.
    Fukasawa Y; Savoury M; Boddy L
    ISME J; 2020 Feb; 14(2):380-388. PubMed ID: 31628441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific aerobic granules can be developed in a completely mixed tank reactor by bioaugmentation using micro-mycelial pellets of Phanerochaete chrysosporium.
    Hailei W; Ping L; Qianlong J; Ge Q
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2687-97. PubMed ID: 24077728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Glucose Concentration on Ethanol Fermentation of White-Rot Fungus Phanerochaete sordida YK-624 Under Aerobic Conditions.
    Mori T; Kondo O; Kawagishi H; Hirai H
    Curr Microbiol; 2019 Mar; 76(3):263-269. PubMed ID: 30607505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete velutina and Resinicium bicolor.
    Tordoff GM; Boddy L; Jones TH
    Mycol Res; 2006 Mar; 110(Pt 3):335-45. PubMed ID: 16487694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of the high explosive hexanitrohexaazaiso-wurtzitane (CL-20).
    Karakaya P; Christodoulatos C; Koutsospyros A; Balas W; Nicolich S; Sidhoum M
    Int J Environ Res Public Health; 2009 Apr; 6(4):1371-92. PubMed ID: 19440524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Forming mycelium pellet and decolorization of dye wastewater under opening conditions].
    Liu XM; Xin BP; Li W; Li ZH; Xu WG
    Huan Jing Ke Xue; 2005 Jul; 26(4):143-6. PubMed ID: 16212185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and ligninolytic system production dynamics of the Phanerochaete chrysosporium fungus A modelling and optimization approach.
    Hormiga JA; Vera J; Frías I; Torres Darias NV
    J Biotechnol; 2008 Oct; 137(1-4):50-8. PubMed ID: 18694789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress.
    Huang DL; Zeng GM; Feng CL; Hu S; Zhao MH; Lai C; Zhang Y; Jiang XY; Liu HL
    Chemosphere; 2010 Nov; 81(9):1091-7. PubMed ID: 20951406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium induced oxalic acid secretion and its role in metal uptake and detoxification mechanisms in Phanerochaete chrysosporium.
    Xu P; Leng Y; Zeng G; Huang D; Lai C; Zhao M; Wei Z; Li N; Huang C; Zhang C; Li F; Cheng M
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):435-43. PubMed ID: 25104033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estrogenic reduction of styrene monomer degraded by Phanerochaete chrysosporium KFRI 20742.
    Lee JW; Lee SM; Hong EJ; Jeung EB; Kang HY; Kim MK; Choi IG
    J Microbiol; 2006 Apr; 44(2):177-84. PubMed ID: 16728954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.