These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20538651)

  • 1. SoRT2: a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations.
    Huang YL; Huang CC; Tang CY; Lu CL
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W221-7. PubMed ID: 20538651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPRING: a tool for the analysis of genome rearrangement using reversals and block-interchanges.
    Lin YC; Lu CL; Liu YC; Tang CY
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W696-9. PubMed ID: 16845100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing genome trees of prokaryotes using overlapping genes.
    Cheng CH; Yang CH; Chiu HT; Lu CL
    BMC Bioinformatics; 2010 Feb; 11():102. PubMed ID: 20181237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BPhyOG: an interactive server for genome-wide inference of bacterial phylogenies based on overlapping genes.
    Luo Y; Fu C; Zhang DY; Lin K
    BMC Bioinformatics; 2007 Jul; 8():266. PubMed ID: 17650344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of circular genome rearrangement by fusions, fissions and block-interchanges.
    Lu CL; Huang YL; Wang TC; Chiu HT
    BMC Bioinformatics; 2006 Jun; 7():295. PubMed ID: 16768797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OGtree: a tool for creating genome trees of prokaryotes based on overlapping genes.
    Jiang LW; Lin KL; Lu CL
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W475-80. PubMed ID: 18456706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale evolution: reconstructing gene orders in the ancestral species.
    Bourque G; Pevzner PA
    Genome Res; 2002 Jan; 12(1):26-36. PubMed ID: 11779828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorting by weighted reversals, transpositions, and inverted transpositions.
    Bader M; Ohlebusch E
    J Comput Biol; 2007 Jun; 14(5):615-36. PubMed ID: 17683264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms.
    Sinha AU; Meller J
    BMC Bioinformatics; 2007 Mar; 8():82. PubMed ID: 17343765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes.
    Alekseyev MA
    J Comput Biol; 2008 Oct; 15(8):1117-31. PubMed ID: 18788907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions.
    Bader M; Abouelhoda MI; Ohlebusch E
    BMC Bioinformatics; 2008 Dec; 9():516. PubMed ID: 19055792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorting by reversals, generalized transpositions, and translocations using permutation groups.
    Huang YL; Lu CL
    J Comput Biol; 2010 May; 17(5):685-705. PubMed ID: 20500022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perfect sorting by reversals is not always difficult.
    BĂ©rard S; Bergeron A; Chauve C; Paul C
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):4-16. PubMed ID: 17277409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GRSR: a tool for deriving genome rearrangement scenarios from multiple unichromosomal genome sequences.
    Wang D; Wang L
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):291. PubMed ID: 30367596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis.
    Lin Y; Rajan V; Moret BM
    Bioinformatics; 2012 Dec; 28(24):3324-5. PubMed ID: 23060619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. imPhy: Imputing Phylogenetic Trees with Missing Information Using Mathematical Programming.
    Yasui N; Vogiatzis C; Yoshida R; Fukumizu K
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1222-1230. PubMed ID: 30507538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated identification of conserved synteny after whole-genome duplication.
    Catchen JM; Conery JS; Postlethwait JH
    Genome Res; 2009 Aug; 19(8):1497-505. PubMed ID: 19465509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing the genomic architecture of mammalian ancestors using multispecies comparative maps.
    Murphy WJ; Bourque G; Tesler G; Pevzner P; O'Brien SJ
    Hum Genomics; 2003 Nov; 1(1):30-40. PubMed ID: 15601531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembling contigs in draft genomes using reversals and block-interchanges.
    Li CL; Chen KT; Lu CL
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S9. PubMed ID: 23734866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SynChro: a fast and easy tool to reconstruct and visualize synteny blocks along eukaryotic chromosomes.
    Drillon G; Carbone A; Fischer G
    PLoS One; 2014; 9(3):e92621. PubMed ID: 24651407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.