These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 20538765)
1. Dicarboxylate carrier-mediated glutathione transport is essential for reactive oxygen species homeostasis and normal respiration in rat brain mitochondria. Kamga CK; Zhang SX; Wang Y Am J Physiol Cell Physiol; 2010 Aug; 299(2):C497-505. PubMed ID: 20538765 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial glutathione transport is a key determinant of neuronal susceptibility to oxidative and nitrosative stress. Wilkins HM; Kirchhof D; Manning E; Joseph JW; Linseman DA J Biol Chem; 2013 Feb; 288(7):5091-101. PubMed ID: 23283974 [TBL] [Abstract][Full Text] [Related]
3. Characterization and Regulation of Carrier Proteins of Mitochondrial Glutathione Uptake in Human Retinal Pigment Epithelium Cells. Wang M; Lau LI; Sreekumar PG; Spee C; Hinton DR; Sadda SR; Kannan R Invest Ophthalmol Vis Sci; 2019 Feb; 60(2):500-516. PubMed ID: 30707752 [TBL] [Abstract][Full Text] [Related]
4. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Baulies A; Montero J; Matías N; Insausti N; Terrones O; Basañez G; Vallejo C; Conde de La Rosa L; Martinez L; Robles D; Morales A; Abian J; Carrascal M; Machida K; Kumar DBU; Tsukamoto H; Kaplowitz N; Garcia-Ruiz C; Fernández-Checa JC Redox Biol; 2018 Apr; 14():164-177. PubMed ID: 28942194 [TBL] [Abstract][Full Text] [Related]
5. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Chen Z; Putt DA; Lash LH Arch Biochem Biophys; 2000 Jan; 373(1):193-202. PubMed ID: 10620338 [TBL] [Abstract][Full Text] [Related]
6. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. Chen Z; Lash LH J Pharmacol Exp Ther; 1998 May; 285(2):608-18. PubMed ID: 9580605 [TBL] [Abstract][Full Text] [Related]
7. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione. Booty LM; King MS; Thangaratnarajah C; Majd H; James AM; Kunji ER; Murphy MP FEBS Lett; 2015 Feb; 589(5):621-8. PubMed ID: 25637873 [TBL] [Abstract][Full Text] [Related]
8. Modulation of mitochondrial glutathione status and cellular energetics in primary cultures of proximal tubular cells from remnant kidney of uninephrectomized rats. Benipal B; Lash LH Biochem Pharmacol; 2013 May; 85(9):1379-88. PubMed ID: 23419872 [TBL] [Abstract][Full Text] [Related]
9. Modulation of expression of rat mitochondrial 2-oxoglutarate carrier in NRK-52E cells alters mitochondrial transport and accumulation of glutathione and susceptibility to chemically induced apoptosis. Xu F; Putt DA; Matherly LH; Lash LH J Pharmacol Exp Ther; 2006 Mar; 316(3):1175-86. PubMed ID: 16291728 [TBL] [Abstract][Full Text] [Related]
10. Hepatic mitochondrial transport of glutathione: studies in isolated rat liver mitochondria and H4IIE rat hepatoma cells. Zhong Q; Putt DA; Xu F; Lash LH Arch Biochem Biophys; 2008 Jun; 474(1):119-27. PubMed ID: 18374655 [TBL] [Abstract][Full Text] [Related]
11. Bcl-2 is a novel interacting partner for the 2-oxoglutarate carrier and a key regulator of mitochondrial glutathione. Wilkins HM; Marquardt K; Lash LH; Linseman DA Free Radic Biol Med; 2012 Jan; 52(2):410-9. PubMed ID: 22115789 [TBL] [Abstract][Full Text] [Related]
13. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver. Gusdon AM; Fernandez-Bueno GA; Wohlgemuth S; Fernandez J; Chen J; Mathews CE BMC Biochem; 2015 Sep; 16():22. PubMed ID: 26358560 [TBL] [Abstract][Full Text] [Related]
14. Stable over-expression of the 2-oxoglutarate carrier enhances neuronal cell resistance to oxidative stress via Bcl-2-dependent mitochondrial GSH transport. Wilkins HM; Brock S; Gray JJ; Linseman DA J Neurochem; 2014 Jul; 130(1):75-86. PubMed ID: 24606213 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides. Gluck M; Ehrhart J; Jayatilleke E; Zeevalk GD J Neurochem; 2002 Jul; 82(1):66-74. PubMed ID: 12091466 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Coll O; Colell A; García-Ruiz C; Kaplowitz N; Fernández-Checa JC Hepatology; 2003 Sep; 38(3):692-702. PubMed ID: 12939596 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic approach for the toxic effects of perfluorooctanoic acid on isolated rat liver and brain mitochondria. Mashayekhi V; Tehrani KH; Hashemzaei M; Tabrizian K; Shahraki J; Hosseini MJ Hum Exp Toxicol; 2015 Oct; 34(10):985-96. PubMed ID: 25586001 [TBL] [Abstract][Full Text] [Related]
18. Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Jang S; Chapa-Dubocq XR; Tyurina YY; St Croix CM; Kapralov AA; Tyurin VA; Bayır H; Kagan VE; Javadov S Redox Biol; 2021 Sep; 45():102021. PubMed ID: 34102574 [TBL] [Abstract][Full Text] [Related]
19. Neuronal mitochondrial toxicity of malondialdehyde: inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria. Long J; Liu C; Sun L; Gao H; Liu J Neurochem Res; 2009 Apr; 34(4):786-94. PubMed ID: 19023656 [TBL] [Abstract][Full Text] [Related]
20. GSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Kelly-Aubert M; Trudel S; Fritsch J; Nguyen-Khoa T; Baudouin-Legros M; Moriceau S; Jeanson L; Djouadi F; Matar C; Conti M; Ollero M; Brouillard F; Edelman A Hum Mol Genet; 2011 Jul; 20(14):2745-59. PubMed ID: 21518732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]