BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20538786)

  • 1. Barttin activates ClC-K channel function by modulating gating.
    Fischer M; Janssen AG; Fahlke C
    J Am Soc Nephrol; 2010 Aug; 21(8):1281-9. PubMed ID: 20538786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel.
    de Santiago JA; Nehrke K; Arreola J
    J Gen Physiol; 2005 Dec; 126(6):591-603. PubMed ID: 16286506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of fast and slow gating relaxations of ClC-0 chloride channels.
    Pusch M; Ludewig U; Jentsch TJ
    J Gen Physiol; 1997 Jan; 109(1):105-16. PubMed ID: 8997669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical model of the CLC-2 ion channel reveals conformational changes associated with selectivity-filter gating.
    McKiernan KA; Koster AK; Maduke M; Pande VS
    PLoS Comput Biol; 2020 Mar; 16(3):e1007530. PubMed ID: 32226009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the human ClC-1 chloride channel.
    Wang K; Preisler SS; Zhang L; Cui Y; Missel JW; Grønberg C; Gotfryd K; Lindahl E; Andersson M; Calloe K; Egea PF; Klaerke DA; Pusch M; Pedersen PA; Zhou ZH; Gourdon P
    PLoS Biol; 2019 Apr; 17(4):e3000218. PubMed ID: 31022181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-and-chain gating mechanism.
    Xu M; Neelands T; Powers AS; Liu Y; Miller SD; Pintilie GD; Bois JD; Dror RO; Chiu W; Maduke M
    Elife; 2024 Feb; 12():. PubMed ID: 38345841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CryoEM structures of the human CLC-2 voltage gated chloride channel reveal a ball and chain gating mechanism.
    Xu M; Neelands T; Powers AS; Liu Y; Miller SD; Pintilie G; Bois JD; Dror RO; Chiu W; Maduke M
    bioRxiv; 2023 Nov; ():. PubMed ID: 37645939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the mouse ClC-K1/Barttin chloride channel.
    L'Hoste S; Diakov A; Andrini O; Genete M; Pinelli L; Grand T; Keck M; Paulais M; Beck L; Korbmacher C; Teulon J; Lourdel S
    Biochim Biophys Acta; 2013 Nov; 1828(11):2399-409. PubMed ID: 23791703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of pH-dependent activation in a CLC transporter.
    Fortea E; Lee S; Chadda R; Argyros Y; Sandal P; Mahoney-Kruszka R; Ciftci HD; Falzone ME; Huysmans G; Robertson JL; Boudker O; Accardi A
    Nat Struct Mol Biol; 2024 Apr; 31(4):644-656. PubMed ID: 38279055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClC-K Kidney Chloride Channels: From Structure to Pathology.
    Andrini O; Eladari D; Picard N
    Handb Exp Pharmacol; 2024; 283():35-58. PubMed ID: 36811727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical and Pharmacological Insights to CLC Chloride Channels.
    Kwon HC; Fairclough RH; Chen TY
    Handb Exp Pharmacol; 2024; 283():1-34. PubMed ID: 35768555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka.
    Gerbino A; De Zio R; Russo D; Milella L; Milano S; Procino G; Pusch M; Svelto M; Carmosino M
    Sci Rep; 2020 Jun; 10(1):10268. PubMed ID: 32581267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine.
    Sahbani D; Strumbo B; Tedeschi S; Conte E; Camerino GM; Benetti E; Montini G; Aceto G; Procino G; Imbrici P; Liantonio A
    Front Pharmacol; 2020; 11():327. PubMed ID: 32256370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging roles for multifunctional ion channel auxiliary subunits in cancer.
    Haworth AS; Brackenbury WJ
    Cell Calcium; 2019 Jun; 80():125-140. PubMed ID: 31071485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution and NMR Characterization of the Ion-Channel Accessory Subunit Barttin in Detergents and Lipid-Bilayer Nanodiscs.
    Viennet T; Bungert-Plümke S; Elter S; Viegas A; Fahlke C; Etzkorn M
    Front Mol Biosci; 2019; 6():13. PubMed ID: 30931313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Insights into the Mechanism of NO
    Lagostena L; Zifarelli G; Picollo A
    J Am Soc Nephrol; 2019 Feb; 30(2):293-302. PubMed ID: 30635372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.
    Wojciechowski D; Thiemann S; Schaal C; Rahtz A; de la Roche J; Begemann B; Becher T; Fischer M
    J Biol Chem; 2018 Jun; 293(22):8626-8637. PubMed ID: 29674316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico model of the human ClC-Kb chloride channel: pore mapping, biostructural pathology and drug screening.
    Louet M; Bitam S; Bakouh N; Bignon Y; Planelles G; Lagorce D; Miteva MA; Eladari D; Teulon J; Villoutreix BO
    Sci Rep; 2017 Aug; 7(1):7249. PubMed ID: 28775266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Membrane Insertion of CLC-K by V33L Barttin Results in Loss of Hearing, but Leaves Kidney Function Intact.
    Tan H; Bungert-Plümke S; Fahlke C; Stölting G
    Front Physiol; 2017; 8():269. PubMed ID: 28555110
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.