BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20538786)

  • 41. Modulation of ClC-K channel function by the accessory subunit barttin.
    Lang F
    J Am Soc Nephrol; 2010 Aug; 21(8):1238-9. PubMed ID: 20595683
    [No Abstract]   [Full Text] [Related]  

  • 42. Mechanism of interaction of niflumic acid with heterologously expressed kidney CLC-K chloride channels.
    Picollo A; Liantonio A; Babini E; Camerino DC; Pusch M
    J Membr Biol; 2007 Apr; 216(2-3):73-82. PubMed ID: 17659402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular mechanisms of Bartter syndrome caused by mutations in the BSND gene.
    Hayama A; Rai T; Sasaki S; Uchida S
    Histochem Cell Biol; 2003 Jun; 119(6):485-93. PubMed ID: 12761627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Barttin binds to the outer lateral surface of the ClC-K2 chloride channel.
    Tajima M; Hayama A; Rai T; Sasaki S; Uchida S
    Biochem Biophys Res Commun; 2007 Nov; 362(4):858-64. PubMed ID: 17767918
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coupling gating with ion permeation in ClC channels.
    Chen TY
    Sci STKE; 2003 Jun; 2003(188):pe23. PubMed ID: 12824475
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity.
    Jeck N; Waldegger P; Doroszewicz J; Seyberth H; Waldegger S
    Kidney Int; 2004 Jan; 65(1):190-7. PubMed ID: 14675050
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alkaline pH block of CLC-K kidney chloride channels mediated by a pore lysine residue.
    Gradogna A; Pusch M
    Biophys J; 2013 Jul; 105(1):80-90. PubMed ID: 23823226
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of hydrophobic anions with the rat skeletal muscle chloride channel ClC-1: effects on permeation and gating.
    Rychkov GY; Pusch M; Roberts ML; Bretag AH
    J Physiol; 2001 Feb; 530(Pt 3):379-93. PubMed ID: 11158270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy.
    De Jesús-Pérez JJ; Castro-Chong A; Shieh RC; Hernández-Carballo CY; De Santiago-Castillo JA; Arreola J
    J Gen Physiol; 2016 Jan; 147(1):25-37. PubMed ID: 26666914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature dependence of human muscle ClC-1 chloride channel.
    Bennetts B; Roberts ML; Bretag AH; Rychkov GY
    J Physiol; 2001 Aug; 535(Pt 1):83-93. PubMed ID: 11507159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells.
    Li X; Shimada K; Showalter LA; Weinman SA
    J Biol Chem; 2000 Nov; 275(46):35994-8. PubMed ID: 10973952
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determinants of slow gating in ClC-0, the voltage-gated chloride channel of Torpedo marmorata.
    Fong P; Rehfeldt A; Jentsch TJ
    Am J Physiol; 1998 Apr; 274(4):C966-73. PubMed ID: 9575793
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S.
    Accardi A; Ferrera L; Pusch M
    J Physiol; 2001 Aug; 534(Pt 3):745-52. PubMed ID: 11483705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein kinase C-dependent regulation of ClC-1 channels in active human muscle and its effect on fast and slow gating.
    Riisager A; de Paoli FV; Yu WP; Pedersen TH; Chen TY; Nielsen OB
    J Physiol; 2016 Jun; 594(12):3391-406. PubMed ID: 26857341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of helices at the dimer interface in ClC-1 common gating.
    Duffield M; Rychkov G; Bretag A; Roberts M
    J Gen Physiol; 2003 Feb; 121(2):149-61. PubMed ID: 12566541
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Zinc inhibits human ClC-1 muscle chloride channel by interacting with its common gating mechanism.
    Duffield MD; Rychkov GY; Bretag AH; Roberts ML
    J Physiol; 2005 Oct; 568(Pt 1):5-12. PubMed ID: 16002443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CLC channel function and dysfunction in health and disease.
    Stölting G; Fischer M; Fahlke C
    Front Physiol; 2014; 5():378. PubMed ID: 25339907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequential interaction of chloride and proton ions with the fast gate steer the voltage-dependent gating in ClC-2 chloride channels.
    Sánchez-Rodríguez JE; De Santiago-Castillo JA; Contreras-Vite JA; Nieto-Delgado PG; Castro-Chong A; Arreola J
    J Physiol; 2012 Sep; 590(17):4239-53. PubMed ID: 22753549
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Association between Hsp90 and the ClC-2 chloride channel upregulates channel function.
    Hinzpeter A; Lipecka J; Brouillard F; Baudoin-Legros M; Dadlez M; Edelman A; Fritsch J
    Am J Physiol Cell Physiol; 2006 Jan; 290(1):C45-56. PubMed ID: 16049054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large movement in the C terminus of CLC-0 chloride channel during slow gating.
    Bykova EA; Zhang XD; Chen TY; Zheng J
    Nat Struct Mol Biol; 2006 Dec; 13(12):1115-9. PubMed ID: 17115052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.