These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 20539055)
21. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Mercier NR; Costantino HR; Tracy MA; Bonassar LJ Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168 [TBL] [Abstract][Full Text] [Related]
22. Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. Zigang Ge ; Lishan Wang ; Boon Chin Heng ; Tian XF; Kai Lu ; Tai Weng Fan V; Jin Fei Yeo ; Tong Cao ; Tan E J Biomater Appl; 2009 May; 23(6):533-47. PubMed ID: 18757495 [TBL] [Abstract][Full Text] [Related]
23. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
24. Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells. Pamula E; Filová E; Bacáková L; Lisá V; Adamczyk D J Biomed Mater Res A; 2009 May; 89(2):432-43. PubMed ID: 18431773 [TBL] [Abstract][Full Text] [Related]
25. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
26. Effect of scaffold architecture and pore size on smooth muscle cell growth. Lee M; Wu BM; Dunn JC J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081 [TBL] [Abstract][Full Text] [Related]
27. The influence of hydroxyapatite particles on in vitro degradation behavior of poly epsilon-caprolactone-based composite scaffolds. Guarino V; Taddei P; Di Foggia M; Fagnano C; Ciapetti G; Ambrosio L Tissue Eng Part A; 2009 Nov; 15(11):3655-68. PubMed ID: 19496680 [TBL] [Abstract][Full Text] [Related]
28. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
29. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Oh SH; Park IK; Kim JM; Lee JH Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648 [TBL] [Abstract][Full Text] [Related]
30. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
31. Effect of cyclic loading on in vitro degradation of poly(L-lactide-co-glycolide) scaffolds. Yang Y; Tang G; Zhao Y; Yuan X; Fan Y J Biomater Sci Polym Ed; 2010; 21(1):53-66. PubMed ID: 20040153 [TBL] [Abstract][Full Text] [Related]
32. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Tan H; Wu J; Lao L; Gao C Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417 [TBL] [Abstract][Full Text] [Related]
33. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering. Shin M; Abukawa H; Troulis MJ; Vacanti JP J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029 [TBL] [Abstract][Full Text] [Related]
34. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Lee JE; Kim KE; Kwon IC; Ahn HJ; Lee SH; Cho H; Kim HJ; Seong SC; Lee MC Biomaterials; 2004 Aug; 25(18):4163-73. PubMed ID: 15046906 [TBL] [Abstract][Full Text] [Related]
35. Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds. Grenier S; Sandig M; Holdsworth DW; Mequanint K J Biomed Mater Res A; 2009 May; 89(2):293-303. PubMed ID: 18431771 [TBL] [Abstract][Full Text] [Related]
36. In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. Zhu XH; Wang CH; Tong YW J Biomed Mater Res A; 2009 May; 89(2):411-23. PubMed ID: 18431776 [TBL] [Abstract][Full Text] [Related]
37. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering. Izquierdo R; Garcia-Giralt N; Rodriguez MT; Cáceres E; García SJ; Gómez Ribelles JL; Monleón M; Monllau JC; Suay J J Biomed Mater Res A; 2008 Apr; 85(1):25-35. PubMed ID: 17688257 [TBL] [Abstract][Full Text] [Related]
38. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro]. Li X; Li DC; Wang L; Lu BH; Wang Z Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096 [TBL] [Abstract][Full Text] [Related]
39. Fabrication and evaluation of porous 2,3-dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold. Roychowdhury P; Kumar V J Biomed Mater Res A; 2006 Feb; 76(2):300-9. PubMed ID: 16270337 [TBL] [Abstract][Full Text] [Related]
40. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering. Wu C; Ramaswamy Y; Zreiqat H Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]