These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 2053908)
1. Maximum likelihood analysis of air and HeO2 dives. Tikuisis P; Weathersby PK; Nishi RY Aviat Space Environ Med; 1991 May; 62(5):425-31. PubMed ID: 2053908 [TBL] [Abstract][Full Text] [Related]
2. Maximum likelihood analysis of bubble incidence for mixed gas diving. Tikuisis P; Gault K; Carrod G Undersea Biomed Res; 1990 Mar; 17(2):159-69. PubMed ID: 2181767 [TBL] [Abstract][Full Text] [Related]
3. Prediction of decompression illness using bubble models. Tikuisis P; Gault KA; Nishi RY Undersea Hyperb Med; 1994 Jun; 21(2):129-43. PubMed ID: 8061555 [TBL] [Abstract][Full Text] [Related]
4. Use of the maximum likelihood method in the analysis of chamber air dives. Tikuisis P; Nishi RY; Weathersby PK Undersea Biomed Res; 1988 Jul; 15(4):301-13. PubMed ID: 3212846 [TBL] [Abstract][Full Text] [Related]
6. Probabilistic gas and bubble dynamics models of decompression sickness occurrence in air and nitrogen-oxygen diving. Gerth WA; Vann RD Undersea Hyperb Med; 1997; 24(4):275-92. PubMed ID: 9444059 [TBL] [Abstract][Full Text] [Related]
7. Risk of decompression sickness in extreme human breath-hold diving. Fitz-Clarke JR Undersea Hyperb Med; 2009; 36(2):83-91. PubMed ID: 19462748 [TBL] [Abstract][Full Text] [Related]
8. Calibration of a bubble evolution model to observed bubble incidence in divers. Gault KA; Tikuisis P; Nishi RY Undersea Hyperb Med; 1995 Sep; 22(3):249-62. PubMed ID: 7580766 [TBL] [Abstract][Full Text] [Related]
9. Intravascular bubble composition in guinea pigs: a possible explanation for differences in decompression risk among different gases. Lillo RS; Maccallum ME; Caldwell JM Undersea Biomed Res; 1992 Sep; 19(5):375-86. PubMed ID: 1355314 [TBL] [Abstract][Full Text] [Related]
11. Recreational technical diving part 2: decompression from deep technical dives. Doolette DJ; Mitchell SJ Diving Hyperb Med; 2013 Jun; 43(2):96-104. PubMed ID: 23813463 [TBL] [Abstract][Full Text] [Related]
12. Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers. Wienke BR; O'Leary TR Comput Biol Med; 2008 May; 38(5):583-600. PubMed ID: 18371945 [TBL] [Abstract][Full Text] [Related]
13. A trial to determine the risk of decompression sickness after a 40 feet of sea water for 200 minute no-stop air dive. Ball R; Parker EC Aviat Space Environ Med; 2000 Feb; 71(2):102-8. PubMed ID: 10685581 [TBL] [Abstract][Full Text] [Related]
14. Decompression comparison of N2 and O2 in rats. Lillo RS; MacCallum ME Undersea Biomed Res; 1991 Jul; 18(4):317-31. PubMed ID: 1887519 [TBL] [Abstract][Full Text] [Related]
15. Direct ascent from air and N2-O2 saturation dives in humans: DCS risk and evidence of a threshold. Van Liew HD; Flynn ET Undersea Hyperb Med; 2005; 32(6):409-19. PubMed ID: 16509283 [TBL] [Abstract][Full Text] [Related]
16. Pathophysiology of inner ear decompression sickness: potential role of the persistent foramen ovale. Mitchell SJ; Doolette DJ Diving Hyperb Med; 2015 Jun; 45(2):105-10. PubMed ID: 26165533 [TBL] [Abstract][Full Text] [Related]
17. Risk of decompression sickness during exposure to high cabin altitude after diving. Pollock NW; Natoli MJ; Gerth WA; Thalmann ED; Vann RD Aviat Space Environ Med; 2003 Nov; 74(11):1163-8. PubMed ID: 14620473 [TBL] [Abstract][Full Text] [Related]
18. [A theoretical estimation of the safety of dives culminating in an uninterrupted lifting]. Nikolaev VP Biofizika; 2010; 55(1):145-53. PubMed ID: 20184152 [TBL] [Abstract][Full Text] [Related]
19. Relative decompression risk of dry and wet chamber air dives. Weathersby PK; Survanshi SS; Nishi RY Undersea Biomed Res; 1990 Jul; 17(4):333-52. PubMed ID: 2396332 [TBL] [Abstract][Full Text] [Related]