These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20539349)

  • 1. Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes.
    Wang X; Wilkinson TD; Mann M; Teo KB; Milne WI
    Appl Opt; 2010 Jun; 49(17):3311-5. PubMed ID: 20539349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab.
    Zhao X; Liu C; Zhang D; Luo Y
    Appl Opt; 2012 May; 51(15):3024-30. PubMed ID: 22614606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent liquid-crystal-based microlens array using vertically aligned carbon nanofiber electrodes on quartz substrates.
    Dai Q; Rajasekharan R; Butt H; Won K; Wang X; Wilkinson TD; Amaragtunga G
    Nanotechnology; 2011 Mar; 22(11):115201. PubMed ID: 21297239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of large arrays of high-aspect-ratio single-crystal silicon columns with isolated vertically aligned multi-walled carbon nanotube tips.
    Velásquez-García LF; Akinwande AI
    Nanotechnology; 2008 Oct; 19(40):405305. PubMed ID: 21832615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterned arrays of vertically aligned carbon nanotube microelectrodes on carbon films prepared by thermal chemical vapor deposition.
    Liu X; Baronian KH; Downard AJ
    Anal Chem; 2008 Nov; 80(22):8835-9. PubMed ID: 18947203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced field emission from aligned multistage carbon nanotube emitter arrays.
    Seelaboyina R; Boddepalli S; Noh K; Jeon M; Choi W
    Nanotechnology; 2008 Feb; 19(6):065605. PubMed ID: 21730703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films.
    Schmidt RH; Kinloch IA; Burgess AN; Windle AH
    Langmuir; 2007 May; 23(10):5707-12. PubMed ID: 17417882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passivation oxide controlled selective carbon nanotube growth on metal substrates.
    Bult JB; Sawyer WG; Ajayan PM; Schadler LS
    Nanotechnology; 2009 Feb; 20(8):085302. PubMed ID: 19417446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled growth of mesostructured crystalline iron oxide nanowires and Fe-filled carbon nanotube arrays templated by mesoporous silica SBA-16 film.
    Shi K; Chi Y; Yu H; Xin B; Fu H
    J Phys Chem B; 2005 Feb; 109(7):2546-51. PubMed ID: 16851255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode.
    Kim YK; Min DH
    Langmuir; 2009 Oct; 25(19):11302-6. PubMed ID: 19788209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode.
    Rakhi RB; Sethupathi K; Ramaprabhu S
    J Phys Chem B; 2009 Mar; 113(10):3190-4. PubMed ID: 19260716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials.
    Ji HS; Kim JH; Kumar S
    Opt Lett; 2003 Jul; 28(13):1147-9. PubMed ID: 12879936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition.
    Min YS; Bae EJ; Oh BS; Kang D; Park W
    J Am Chem Soc; 2005 Sep; 127(36):12498-9. PubMed ID: 16144391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals.
    Rajasekharan R; Dai Q; Wilkinson TD
    Appl Opt; 2010 Apr; 49(11):2099-104. PubMed ID: 20390012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose.
    Qiu JD; Zhou WM; Guo J; Wang R; Liang RP
    Anal Biochem; 2009 Feb; 385(2):264-9. PubMed ID: 19100707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical properties of polyaniline and multi-walled carbon nanotube hybrid fibers.
    Kim YJ; Shin MK; Kim SJ; Kim SK; Lee H; Park JS; Kim SI
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4185-9. PubMed ID: 18047147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid crystal microlens with dual apertures and electrically controlling focus shift.
    Kang S; Zhang X
    Appl Opt; 2014 Jan; 53(2):244-8. PubMed ID: 24514056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.