These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 20539496)

  • 1. Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index.
    Stramski D; Morel A; Bricaud A
    Appl Opt; 1988 Oct; 27(19):3954-6. PubMed ID: 20539496
    [No Abstract]   [Full Text] [Related]  

  • 2. Retrieval of size and refractive index of spherical particles by multiangle light scattering: neural network method application.
    Berdnik VV; Loiko VA
    Appl Opt; 2009 Nov; 48(32):6178-87. PubMed ID: 19904314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete-dipole-approximation-based light-scattering calculations for particles with a real refractive index smaller than unity.
    Laczik Z
    Appl Opt; 1996 Jul; 35(19):3736-45. PubMed ID: 21102771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts.
    Gilliland KO; Freel CD; Johnsen S; Craig Fowler W; Costello MJ
    Exp Eye Res; 2004 Oct; 79(4):563-76. PubMed ID: 15381040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling.
    Bricaud A; Morel A
    Appl Opt; 1986 Feb; 25(4):571. PubMed ID: 18231215
    [No Abstract]   [Full Text] [Related]  

  • 7. The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering.
    Johnsen S; Widder EA
    J Theor Biol; 1999 Jul; 199(2):181-98. PubMed ID: 10395813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the wavelength-dependent effective refractive index of spherical plastic pigments in a liquid matrix.
    Peiponen KE; Jääskeläinen AJ; Vartiainen EM; Räty J; Tapper U; Richard O; Kauppinen EI; Lumme K
    Appl Opt; 2001 Oct; 40(30):5482-6. PubMed ID: 18364832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness.
    Iwaniuk D; Rastogi P; Hack E
    Opt Express; 2011 Sep; 19(20):19407-14. PubMed ID: 21996881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Light Scattering by Spherical Particle Systems and Its Dependence on Concentration: A T-Matrix Study.
    Quirantes A; Arroyo F; Quirantes-Ros J
    J Colloid Interface Sci; 2001 Aug; 240(1):78-82. PubMed ID: 11446788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending ATOFMS measurements to include refractive index and density.
    Moffet RC; Prather KA
    Anal Chem; 2005 Oct; 77(20):6535-41. PubMed ID: 16223237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams.
    Ambrosio LA; Hernández-Figueroa HE
    Appl Opt; 2011 Aug; 50(22):4489-98. PubMed ID: 21833125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering by particles with radially variable refractive indices.
    Perelman AY
    Appl Opt; 1996 Sep; 35(27):5452-60. PubMed ID: 21127544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices.
    Bhandari A; Hamre B; Frette Ø; Stamnes K; Stamnes JJ
    Opt Express; 2011 Jul; 19(15):14549-67. PubMed ID: 21934819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-particle light-scattering measurement: photochemical aerosols and atmospheric particulates.
    Phillips DT; Wyatt PJ
    Appl Opt; 1972 Sep; 11(9):2082-7. PubMed ID: 20119285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of structural orientation of enamel and dentine on light attenuation and local refractive index: an optical coherence tomography study.
    Hariri I; Sadr A; Shimada Y; Tagami J; Sumi Y
    J Dent; 2012 May; 40(5):387-96. PubMed ID: 22342164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lorenz-Mie light scattering in cellular biology.
    Ulicný J
    Gen Physiol Biophys; 1992 Apr; 11(2):133-51. PubMed ID: 1426967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers.
    Sobolewska A; Miniewicz A
    J Phys Chem B; 2007 Feb; 111(7):1536-44. PubMed ID: 17263574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single scattering albedo, asymmetry parameter, apparent refractive index, and apparent soot content of dry atmospheric particles.
    Hänel G
    Appl Opt; 1988 Jun; 27(11):2287-95. PubMed ID: 20531750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.