These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 20539521)

  • 1. Incidence angles for optimized ATR excitation of surface plasmons.
    Kou EF; Tamir T
    Appl Opt; 1988 Oct; 27(19):4098-103. PubMed ID: 20539521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation of surface plasmons by finite width beams.
    Kou EF; Tamir T
    Appl Opt; 1989 Mar; 28(6):1169-77. PubMed ID: 20548637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long range surface plasmon-coupled fluorescence emission for biosensor applications.
    Toma K; Dostalek J; Knoll W
    Opt Express; 2011 Jun; 19(12):11090-9. PubMed ID: 21716337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicolor surface plasmon resonance imaging of ink jet-printed protein microarrays.
    Singh BK; Hillier AC
    Anal Chem; 2007 Jul; 79(14):5124-32. PubMed ID: 17569506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimization of detection volume by surface-plasmon-coupled emission.
    Gryczynski Z; Borejdo J; Calander N; Matveeva EG; Gryczynski I
    Anal Biochem; 2006 Sep; 356(1):125-31. PubMed ID: 16764813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A density functional theory investigation of Fe-N-O bonding in heme proteins and model systems.
    Zhang Y; Gossman W; Oldfield E
    J Am Chem Soc; 2003 Dec; 125(52):16387-96. PubMed ID: 14692781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discontinuity induced angular distribution of photon plasmon coupling.
    Brissinger D; Lereu AL; Salomon L; Charvolin T; Cluzel B; Dumas C; Passian A; de Fornel F
    Opt Express; 2011 Aug; 19(18):17750-7. PubMed ID: 21935142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy.
    Passian A; Wig A; Lereu AL; Evans PG; Meriaudeau F; Thundat T; Ferrell TL
    Ultramicroscopy; 2004 Aug; 100(3-4):429-36. PubMed ID: 15231335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic description of a drop on a solid surface.
    Ruckenstein E; Berim GO
    Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic treatment of a barrel drop on fibers and nanofibers.
    Berim GO; Ruckenstein E
    J Colloid Interface Sci; 2005 Jun; 286(2):681-95. PubMed ID: 15897087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-plasmon excitation using a polarization-preserving optical fiber and an index-matching fluid optical cell.
    Richards JD; Garabedian R; Gonzalez C; Knoesen A; Smith RL; Spencer R; Collins SD
    Appl Opt; 1993 Jun; 32(16):2901-6. PubMed ID: 20829893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of energy transfer in collisions of O(3P) atoms with a 1-decanethiol self-assembled monolayer surface.
    Tasić US; Yan T; Hase WL
    J Phys Chem B; 2006 Jun; 110(24):11863-77. PubMed ID: 16800489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical effects of surface plasma waves with damping in metallic thin films.
    Olney RD; Romagnoli RJ
    Appl Opt; 1987 Jun; 26(11):2279-82. PubMed ID: 20489857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder.
    Mitri FG
    Ultrasonics; 2010 Jun; 50(7):675-82. PubMed ID: 20181372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations to the determination of the optical properties of a thin film by combined ellipsometric and surface plasmon resonance measurements.
    Schildkraut JS
    Appl Opt; 1988 Aug; 27(16):3329-33. PubMed ID: 20539374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip.
    Yuk JS; MacCraith BD; McDonagh C
    Biosens Bioelectron; 2011 Mar; 26(7):3213-8. PubMed ID: 21256731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grazing-incidence small-angle X-ray scattering from a random rough surface: a self-consistent wavefunction approximation.
    Chukhovskii F
    Acta Crystallogr A; 2011 May; 67(Pt 3):200-9. PubMed ID: 21487178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference of conically scattered light in surface plasmon resonance.
    Webster A; Vollmer F
    Opt Lett; 2013 Feb; 38(3):244-6. PubMed ID: 23381398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfect coupling of light to surface plasmons with ultra-narrow linewidths.
    Sukharev M; Sievert PR; Seideman T; Ketterson JB
    J Chem Phys; 2009 Jul; 131(3):034708. PubMed ID: 19624222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.