These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20539592)

  • 41. In Situ Combustion Measurements of CO(2) by Use of a Distributed-Feedback Diode-Laser Sensor Near 2.0 mum.
    Webber ME; Kim S; Sanders ST; Baer DS; Hanson RK; Ikeda Y
    Appl Opt; 2001 Feb; 40(6):821-8. PubMed ID: 18357062
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous wave laser absorption techniques for gasdynamic measurements in supersonic flows.
    Davidson DF; Chang AY; Dirosa MD; Hanson RK
    Appl Opt; 1991 Jun; 30(18):2598-608. PubMed ID: 20700249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Study of CO2 spectroscopic parameters at high temperature near 1.57 microm].
    Cai TD; Wang GS; Chen WD; Zhang WJ; Gao XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1463-7. PubMed ID: 19810509
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tomographic laser absorption spectroscopy using Tikhonov regularization.
    Guha A; Schoegl I
    Appl Opt; 2014 Dec; 53(34):8095-103. PubMed ID: 25607968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-pulse, two-line temperature-measurement technique using KrF laser-induced O(2) fluorescence.
    Grinstead JH; Laufer G; McDaniel JC
    Appl Opt; 1995 Aug; 34(24):5501-12. PubMed ID: 21060372
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of OH in flames by using polarization spectroscopy.
    Nyholm K; Maier R; Aminoff CG; Kaivola M
    Appl Opt; 1993 Feb; 32(6):919-24. PubMed ID: 20802767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tunable diode-laser absorption measurements of methane at elevated temperatures.
    Nagali V; Chou SI; Baer DS; Hanson RK; Segall J
    Appl Opt; 1996 Jul; 35(21):4026-32. PubMed ID: 21102806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement.
    Imaki M; Kameyama S; Hirano Y; Ueno S; Sakaizawa D; Kawakami S; Nakajima M
    Opt Lett; 2012 Jul; 37(13):2688-90. PubMed ID: 22743496
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison between CARS and corrected thermocouple temperature measurements in a diffusion flame.
    Farrow RL; Mattern PL; Rahn LA
    Appl Opt; 1982 Sep; 21(17):3119-25. PubMed ID: 20396187
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vibrational energy transfer in laser-excited A(2)Sigma(+) OH as a flame thermometer.
    Crosley DR; Smith GP
    Appl Opt; 1980 Feb; 19(4):517-20. PubMed ID: 20216886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows.
    Philippe LC; Hanson RK
    Appl Opt; 1993 Oct; 32(30):6090-103. PubMed ID: 20856437
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI.
    Wu Y; Bottom A; Zhang Z; Ombrello TM; Katta VR
    Opt Express; 2011 Nov; 19(24):23997-4004. PubMed ID: 22109424
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of multiphoton absorption in inert gases for the measurement of gas temperatures.
    Bednar NJ; Walewski JW; Sanders ST
    Appl Spectrosc; 2006 Mar; 60(3):246-53. PubMed ID: 16608566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements.
    Bahlawane N; Struckmeier U; Kasper TS; Osswald P
    Rev Sci Instrum; 2007 Jan; 78(1):013905. PubMed ID: 17503931
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laser-induced fluorescence study of OH in flat flames of 1-10 bar compared with resonance CARS experiments.
    Kohse-Höinghaus K; Meier U; Attal-Trétout B
    Appl Opt; 1990 Apr; 29(10):1560-9. PubMed ID: 20563040
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selection of absorption lines for I(2)-planar laser-induced fluorescence measurement of temperature in a compressible flow.
    Ni-Imi T; Fujimoto T; Ishida T
    Appl Opt; 1995 Sep; 34(27):6275-81. PubMed ID: 21060471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calibration-free scanned wavelength modulation spectroscopy--application to H(2)O and temperature sensing in flames.
    Qu Z; Ghorbani R; Valiev D; Schmidt FM
    Opt Express; 2015 Jun; 23(12):16492-9. PubMed ID: 26193620
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of liquid crystal environment on the spectroscopic and photophysical properties of well-known reacting systems 2,3-dimethylindole (DMI) and 9-cyanoanthracene (9CNA).
    Mandal P; Kundu S; Misra T; Roy SK; Ganguly T
    J Phys Chem A; 2007 Nov; 111(45):11480-6. PubMed ID: 17956077
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct Coherent Raman Temperature Imaging and Wideband Chemical Detection in a Hydrocarbon Flat Flame.
    Bohlin A; Kliewer CJ
    J Phys Chem Lett; 2015 Feb; 6(4):643-9. PubMed ID: 26262480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.