These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20539607)

  • 1. Quantum confined Stark effect of excitonic transitions in GaAs/AIGaAs MQW structures for implementation of neural networks: basic device requirements.
    Singh J; Hong S; Bhattacharya PK; Sahai R
    Appl Opt; 1988 Nov; 27(21):4554-61. PubMed ID: 20539607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of device length and background doping on the relative magnitudes of phase and amplitude modulation in GaAs/AIGaAs PIN multiple quantum well waveguide optical modulators.
    Bradley PJ; Whitehead M; Parry G; Mistry P; Roberts JS
    Appl Opt; 1989 Apr; 28(8):1560-4. PubMed ID: 20548699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the effects of applying external fields and device dimensions alterations on GaAs/AlGaAs multiple quantum well slow light devices based on excitonic population oscillation.
    Kohandani R; Zandi A; Kaatuzian H
    Appl Opt; 2014 Feb; 53(6):1228-36. PubMed ID: 24663324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon.
    Kuo YH; Lee YK; Ge Y; Ren S; Roth JE; Kamins TI; Miller DA; Harris JS
    Nature; 2005 Oct; 437(7063):1334-6. PubMed ID: 16251959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature invariance of quantum well modulators using a feedback circuit based on the quantum confined Stark effect.
    Biswas D; Bhattacharya PK; Singh J
    Appl Opt; 1990 Sep; 29(27):3900-4. PubMed ID: 20577311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical implementation of a second-order translation-invariant network algorithm.
    Horan P; Jennings A; Kelly B; Hegarty J
    Appl Opt; 1993 Mar; 32(8):1311-21. PubMed ID: 20820265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization.
    Badada BH; Shi T; Jackson HE; Smith LM; Zheng C; Etheridge J; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2015 Dec; 15(12):7847-52. PubMed ID: 26562619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GaAs/AlGaAs optical synaptic interconnection device for neural networks.
    Ohta J; Takahashi M; Nitta Y; Tai S; Mitsunaga K; Kyuma K
    Opt Lett; 1989 Aug; 14(16):844-6. PubMed ID: 19752987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amorphous silicon photoconductive arrays for artificial neural networks.
    Rietman EA; Frye RC; Wong CC; Kornfeld CD
    Appl Opt; 1989 Aug; 28(16):3474-8. PubMed ID: 20555724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates.
    Zeng Z; Wang J
    Neural Netw; 2009; 22(5-6):651-7. PubMed ID: 19604674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically addressed spatial light modulators by MBE-grown nipi MQW structures.
    Maserjian J; Andersson PO; Hancock BR; Lannelli JM; Eng ST; Grunthaner FJ; Law KK; Holtz PO; Simes RJ; Coldren LA; Gossard AC; Merz JL
    Appl Opt; 1989 Nov; 28(22):4801-7. PubMed ID: 20555953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic switching of hole character and single photon polarization using the quantum confined Stark effect in quantum dot-in-dot structures.
    Troncale V; Karlsson KF; Kapon E
    Nanotechnology; 2010 Jul; 21(28):285202. PubMed ID: 20562488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures.
    Chaisakul P; Marris-Morini D; Isella G; Chrastina D; Le Roux X; Gatti E; Edmond S; Osmond J; Cassan E; Vivien L
    Opt Lett; 2010 Sep; 35(17):2913-5. PubMed ID: 20808367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specification and implementation of a digital Hopfield-type associative memory with on-chip training.
    Johannet A; Personnaz L; Dreyfus G; Gascuel JD; Weinfeld M
    IEEE Trans Neural Netw; 1992; 3(4):529-39. PubMed ID: 18276455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical implementation of the Hopfield neural network using multiple fiber nets.
    Ito F; Kitayama K
    Appl Opt; 1989 Oct; 28(19):4176-81. PubMed ID: 20555844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designs and devices for optical bidirectional associative memories.
    Guest CC; Tekolste R
    Appl Opt; 1987 Dec; 26(23):5055-60. PubMed ID: 20523484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical neural networks: an introduction by the feature editors.
    Wagner K; Psaltis D
    Appl Opt; 1993 Mar; 32(8):1261-3. PubMed ID: 20820259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks with chaotic recursive nodes: techniques for the design of associative memories, contrast with Hopfield architectures, and extensions for time-dependent inputs.
    Del-Moral-Hernandez E
    Neural Netw; 2003; 16(5-6):675-82. PubMed ID: 12850022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of device length and background doping on the relative magnitudes of phase and amplitude modulation in GaAs/AIGaAs PIN multiple quantum well waveguide optical modulators: erratum.
    Bradley PJ; Whitehead M; Parry G; Mistry P; Roberts JS
    Appl Opt; 1989 Oct; 28(19):4050. PubMed ID: 20555823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.