These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20539710)

  • 21. Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass.
    Ohfuchi T; Sakakura M; Yamada Y; Fukuda N; Takiya T; Shimotsuma Y; Miura K
    Opt Express; 2017 Oct; 25(20):23738-23754. PubMed ID: 29041326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of Deep-Ultraviolet Zero-Order Waveplate Materials by Rational Assembly of [AlO
    Wu Z; Li H; Zhang Z; Su X; Shi H; Huang YN
    Inorg Chem; 2024 Jan; 63(3):1674-1681. PubMed ID: 38175192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inner helical waveplate with angle-insensitive retardation.
    Zhang C; Niu R; Sha P; Li X; Ma H; Sun Y
    Opt Express; 2021 Aug; 29(18):28924-28934. PubMed ID: 34615012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Comparison between Nanogratings-Based and Stress-Engineered Waveplates Written by Femtosecond Laser in Silica.
    Tian J; Yao H; Cavillon M; Garcia-Caurel E; Ossikovski R; Stchakovsky M; Eypert C; Poumellec B; Lancry M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31991590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Athermalized channeled spectropolarimetry using a biaxial potassium titanyl phosphate crystal.
    Craven-Jones J; Way BM; Kudenov MW; Mercier JA
    Opt Lett; 2013 May; 38(10):1657-9. PubMed ID: 23938901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retardance and flicker modeling and characterization of electro-optic linear retarders by averaged Stokes polarimetry.
    Martínez FJ; Márquez A; Gallego S; Francés J; Pascual I; Beléndez A
    Opt Lett; 2014 Feb; 39(4):1011-4. PubMed ID: 24562265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Method for retrieving the polarization properties of a waveplate assembled in a multispectral, complete polarimeter.
    Hollstein A; Ruhtz T
    Opt Lett; 2009 Sep; 34(17):2599-601. PubMed ID: 19724502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Achromatic linear retarder with tunable retardance.
    Messaadi A; Sánchez-López MM; Vargas A; García-Martínez P; Moreno I
    Opt Lett; 2018 Jul; 43(14):3277-3280. PubMed ID: 30004485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of birefringent filters. 2:achromatic waveplates.
    Title AM
    Appl Opt; 1975 Jan; 14(1):229-37. PubMed ID: 20134858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable wavelength terahertz polarization converter based on quartz waveplates.
    Kaveev AK; Kropotov GI; Tsypishka DI; Tzibizov IA; Vinerov IA; Kaveeva EG
    Appl Opt; 2014 Aug; 53(24):5410-5. PubMed ID: 25321112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High efficiency reflective waveplates in the midwave infrared.
    Ribaudo T; Taylor A; Nguyen BM; Bethke D; Shaner EA
    Opt Express; 2014 Feb; 22(3):2821-9. PubMed ID: 24663573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of reflection retarders by use of nonnegative film-substrate systems.
    Zaghloul AR; Keeling DA; Berzett WA; Mason JS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1637-45. PubMed ID: 16134861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Achromatic athermalized retarder fabrication.
    Mahler AB; McClain S; Chipman R
    Appl Opt; 2011 Feb; 50(5):755-65. PubMed ID: 21343998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and performance of a stable linear retarder.
    Rochford KB; Rose AH; Williams PA; Wang CM; Clarke IG; Hale PD; Day GW
    Appl Opt; 1997 Sep; 36(25):6458-65. PubMed ID: 18259504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achromatization of waveplate for broadband polarimetric system.
    Mu T; Zhang C; Li Q; Liang R
    Opt Lett; 2015 Jun; 40(11):2485-8. PubMed ID: 26030538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphical method to design multilayer phase retarders.
    Apfel JH
    Appl Opt; 1981 Mar; 20(6):1024-9. PubMed ID: 20309253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase retarders highly insensitive to the input angle.
    Nagib NN
    Appl Opt; 1998 Mar; 37(7):1231-5. PubMed ID: 18268709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generalized elliptical retarder design and construction using nematic and cholesteric phase liquid crystal polymers.
    Miller S; Jiang L; Pau S
    Opt Express; 2022 May; 30(10):16734-16747. PubMed ID: 36221510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of optical activity to Mueller matrix ellipsometry of composed waveplates.
    Vala D; Koleják P; Postava K; Kildemo M; Provazníková P; Pištora J
    Opt Express; 2021 Mar; 29(7):10434-10450. PubMed ID: 33820178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical inspection of liquid crystal variable retarder inhomogeneities.
    Vargas J; Uribe-Patarroyo N; Antonio Quiroga J; Alvarez-Herrero A; Belenguer T
    Appl Opt; 2010 Feb; 49(4):568-74. PubMed ID: 20119002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.