These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 20539899)
1. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition. Qi WJ; Wu D; Ling J; Huang CZ Chem Commun (Camb); 2010 Jul; 46(27):4893-5. PubMed ID: 20539899 [TBL] [Abstract][Full Text] [Related]
2. Visual and light scattering spectrometric method for the detection of melamine using uracil 5'-triphosphate sodium modified gold nanoparticles. Liang L; Zhen S; Huang C Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():99-104. PubMed ID: 27599194 [TBL] [Abstract][Full Text] [Related]
3. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles. Wu C; Xiong C; Wang L; Lan C; Ling L Analyst; 2010 Oct; 135(10):2682-7. PubMed ID: 20820488 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe. Cao Q; Zhao H; He Y; Li X; Zeng L; Ding N; Wang J; Yang J; Wang G Biosens Bioelectron; 2010 Aug; 25(12):2680-5. PubMed ID: 20510598 [TBL] [Abstract][Full Text] [Related]
5. Optical investigations on ATP-induced aggregation of positive-charged gold nanoparticles. Li CM; Li YF; Wang J; Huang CZ Talanta; 2010 Jun; 81(4-5):1339-45. PubMed ID: 20441904 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen-bonding recognition-induced aggregation of gold nanoparticles for the determination of the migration of melamine monomers using dynamic light scattering. Wu L; Chen K; Lu Z; Li T; Shao K; Shao F; Han H Anal Chim Acta; 2014 Oct; 845():92-7. PubMed ID: 25201277 [TBL] [Abstract][Full Text] [Related]
7. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique. Huang CZ; Liao QG; Gan LH; Guo FL; Li YF Anal Chim Acta; 2007 Dec; 604(2):165-9. PubMed ID: 17996538 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. Ai K; Liu Y; Lu L J Am Chem Soc; 2009 Jul; 131(27):9496-7. PubMed ID: 19537721 [TBL] [Abstract][Full Text] [Related]
9. Direct determination of urinary lysozyme using surface plasmon resonance light-scattering of gold nanoparticles. Wang X; Xu Y; Xu X; Hu K; Xiang M; Li L; Liu F; Li N Talanta; 2010 Jul; 82(2):693-7. PubMed ID: 20602956 [TBL] [Abstract][Full Text] [Related]
10. Selective detection of hexachromium ions by localized surface plasmon resonance measurements using gold nanoparticles/chitosan composite interfaces. Fahnestock KJ; Manesse M; McIlwee HA; Schauer CL; Boukherroub R; Szunerits S Analyst; 2009 May; 134(5):881-6. PubMed ID: 19381379 [TBL] [Abstract][Full Text] [Related]
11. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
12. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface. Jung J; Na K; Lee J; Kim KW; Hyun J Anal Chim Acta; 2009 Sep; 651(1):91-7. PubMed ID: 19733741 [TBL] [Abstract][Full Text] [Related]
13. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Fan Y; Long YF; Li YF Anal Chim Acta; 2009 Oct; 653(2):207-11. PubMed ID: 19808115 [TBL] [Abstract][Full Text] [Related]
14. Determination of DNA based on localized surface plasmon resonance light scattering using unmodified gold bipyramids. Qi H; Bi N; Chen Y; Zheng X; Zhang H; Wang X; Chen Y; Tian Y Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):769-73. PubMed ID: 21784699 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles. Liang X; Wei H; Cui Z; Deng J; Zhang Z; You X; Zhang XE Analyst; 2011 Jan; 136(1):179-83. PubMed ID: 20877886 [TBL] [Abstract][Full Text] [Related]
17. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Guler U; Turan R Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120 [TBL] [Abstract][Full Text] [Related]
18. Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Vasimalai N; Abraham John S Biosens Bioelectron; 2013 Apr; 42():267-72. PubMed ID: 23208097 [TBL] [Abstract][Full Text] [Related]
19. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label. Kajiura M; Nakanishi T; Iida H; Takada H; Osaka T J Colloid Interface Sci; 2009 Jul; 335(1):140-5. PubMed ID: 19395015 [TBL] [Abstract][Full Text] [Related]
20. Interactions of phenyldithioesters with gold nanoparticles (AuNPs): implications for AuNP functionalization and molecular barcoding of AuNP assemblies. Blakey I; Schiller TL; Merican Z; Fredericks PM Langmuir; 2010 Jan; 26(2):692-701. PubMed ID: 19824687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]