These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 20540093)
1. Biodegradable xylitol-based elastomers: in vivo behavior and biocompatibility. Bruggeman JP; Bettinger CJ; Langer R J Biomed Mater Res A; 2010 Oct; 95(1):92-104. PubMed ID: 20540093 [TBL] [Abstract][Full Text] [Related]
2. A comparative study on poly(xylitol sebacate) and poly(glycerol sebacate): mechanical properties, biodegradation and cytocompatibility. Li Y; Huang W; Cook WD; Chen Q Biomed Mater; 2013 Jun; 8(3):035006. PubMed ID: 23558205 [TBL] [Abstract][Full Text] [Related]
3. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic and oxidative degradation of poly(polyol sebacate). Li Y; Thouas GA; Shi H; Chen Q J Biomater Appl; 2014 Apr; 28(8):1138-50. PubMed ID: 23904286 [TBL] [Abstract][Full Text] [Related]
5. In vivo degradation characteristics of poly(glycerol sebacate). Wang Y; Kim YM; Langer R J Biomed Mater Res A; 2003 Jul; 66(1):192-7. PubMed ID: 12833446 [TBL] [Abstract][Full Text] [Related]
6. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes. Wang Z; Roberge C; Dao LH; Wan Y; Shi G; Rouabhia M; Guidoin R; Zhang Z J Biomed Mater Res A; 2004 Jul; 70(1):28-38. PubMed ID: 15174106 [TBL] [Abstract][Full Text] [Related]
7. Suppression of collagen-induced arthritis by single administration of poly(lactic-co-glycolic acid) nanoparticles entrapping type II collagen: a novel treatment strategy for induction of oral tolerance. Kim WU; Lee WK; Ryoo JW; Kim SH; Kim J; Youn J; Min SY; Bae EY; Hwang SY; Park SH; Cho CS; Park JS; Kim HY Arthritis Rheum; 2002 Apr; 46(4):1109-20. PubMed ID: 11953991 [TBL] [Abstract][Full Text] [Related]
8. Poly(anhydride-co-imides): in vivo biocompatibility in a rat model. Ibim SM; Uhrich KE; Bronson R; El-Amin SF; Langer RS; Laurencin CT Biomaterials; 1998 May; 19(10):941-51. PubMed ID: 9690836 [TBL] [Abstract][Full Text] [Related]
10. In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres. de Boer R; Knight AM; Spinner RJ; Malessy MJ; Yaszemski MJ; Windebank AJ J Biomed Mater Res A; 2010 Dec; 95(4):1067-73. PubMed ID: 20878933 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Renno AC; van de Watering FC; Nejadnik MR; Crovace MC; Zanotto ED; Wolke JG; Jansen JA; van den Beucken JJ Acta Biomater; 2013 Mar; 9(3):5728-39. PubMed ID: 23159565 [TBL] [Abstract][Full Text] [Related]
12. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Liang SL; Cook WD; Thouas GA; Chen QZ Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061 [TBL] [Abstract][Full Text] [Related]
13. A tough biodegradable elastomer. Wang Y; Ameer GA; Sheppard BJ; Langer R Nat Biotechnol; 2002 Jun; 20(6):602-6. PubMed ID: 12042865 [TBL] [Abstract][Full Text] [Related]
14. A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo. Sandor M; Harris J; Mathiowitz E Biomaterials; 2002 Nov; 23(22):4413-23. PubMed ID: 12219832 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable polyester elastomers in tissue engineering. Webb AR; Yang J; Ameer GA Expert Opin Biol Ther; 2004 Jun; 4(6):801-12. PubMed ID: 15174963 [TBL] [Abstract][Full Text] [Related]
16. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
17. Design of a composite biomaterial system for tissue engineering applications. Jiang B; Akar B; Waller TM; Larson JC; Appel AA; Brey EM Acta Biomater; 2014 Mar; 10(3):1177-86. PubMed ID: 24321351 [TBL] [Abstract][Full Text] [Related]
18. Cellular responses of bioabsorbable polymeric material and Guglielmi detachable coil in experimental aneurysms. Murayama Y; ViƱuela F; Tateshima S; Gonzalez NR; Song JK; Mahdavieh H; Iruela-Arispe L Stroke; 2002 Apr; 33(4):1120-8. PubMed ID: 11935070 [TBL] [Abstract][Full Text] [Related]
19. In vivo biocompatibility study of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks. Ronneberger B; Kao WJ; Anderson JM; Kissel T J Biomed Mater Res; 1996 Jan; 30(1):31-40. PubMed ID: 8788103 [TBL] [Abstract][Full Text] [Related]
20. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]