BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 20540140)

  • 1. New microporous materials for acetylene storage and C(2)H(2)/CO(2) separation: insights from molecular simulations.
    Fischer M; Hoffmann F; Fröba M
    Chemphyschem; 2010 Jul; 11(10):2220-9. PubMed ID: 20540140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC.
    Karra JR; Walton KS
    Langmuir; 2008 Aug; 24(16):8620-6. PubMed ID: 18630977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system.
    Ramsahye NA; Maurin G; Bourrelly S; Llewellyn P; Loiseau T; Ferey G
    Phys Chem Chem Phys; 2007 Mar; 9(9):1059-63. PubMed ID: 17311147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective carbon dioxide sorption in an organic molecular porous material.
    Kim H; Kim Y; Yoon M; Lim S; Park SM; Seo G; Kim K
    J Am Chem Soc; 2010 Sep; 132(35):12200-2. PubMed ID: 20718409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of nitrogen physisorption on different C70 crystal structures using an ab initio based potential.
    Arora G; Klauda JB; Sandler SI
    J Phys Chem B; 2005 Sep; 109(36):17267-73. PubMed ID: 16853204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.
    Puibasset J; Pellenq RJ
    J Phys Chem B; 2008 May; 112(20):6390-7. PubMed ID: 18433164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interpenetrated metal-organic framework and its gas storage behavior: simulation and experiment.
    Frahm D; Fischer M; Hoffmann F; Fröba M
    Inorg Chem; 2011 Nov; 50(21):11055-63. PubMed ID: 21985253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surface heterogeneity on the adsorption of CO₂ in microporous carbons.
    Liu Y; Wilcox J
    Environ Sci Technol; 2012 Feb; 46(3):1940-7. PubMed ID: 22216997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of CO2 and N2 by adsorption in C168 schwarzite: a combination of quantum mechanics and molecular simulation study.
    Jiang J; Sandler SI
    J Am Chem Soc; 2005 Aug; 127(34):11989-97. PubMed ID: 16117538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferred hydrogen adsorption sites in various MOFs--a comparative computational study.
    Fischer M; Hoffmann F; Fröba M
    Chemphyschem; 2009 Oct; 10(15):2647-57. PubMed ID: 19768717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal.
    Zhang JP; Chen XM
    J Am Chem Soc; 2009 Apr; 131(15):5516-21. PubMed ID: 19323553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material.
    Chen B; Zhao X; Putkham A; Hong K; Lobkovsky EB; Hurtado EJ; Fletcher AJ; Thomas KM
    J Am Chem Soc; 2008 May; 130(20):6411-23. PubMed ID: 18435535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: a combined ab initio and Monte Carlo investigation.
    Mpourmpakis G; Froudakis GE; Lithoxoos GP; Samios J
    J Chem Phys; 2007 Apr; 126(14):144704. PubMed ID: 17444729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic frameworks for oxygen storage.
    DeCoste JB; Weston MH; Fuller PE; Tovar TM; Peterson GW; LeVan MD; Farha OK
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14092-5. PubMed ID: 25319881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly controlled acetylene accommodation in a metal-organic microporous material.
    Matsuda R; Kitaura R; Kitagawa S; Kubota Y; Belosludov RV; Kobayashi TC; Sakamoto H; Chiba T; Takata M; Kawazoe Y; Mita Y
    Nature; 2005 Jul; 436(7048):238-41. PubMed ID: 16015325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds.
    Cheng H; Sha X; Chen L; Cooper AC; Foo ML; Lau GC; Bailey WH; Pez GP
    J Am Chem Soc; 2009 Dec; 131(49):17732-3. PubMed ID: 19928879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks.
    Walton KS; Snurr RQ
    J Am Chem Soc; 2007 Jul; 129(27):8552-6. PubMed ID: 17580944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Argon adsorption on Cu3(benzene-1,3,5-tricarboxylate)2(H2O)3 metal-organic framework.
    Krungleviciute V; Lask K; Heroux L; Migone AD; Lee JY; Li J; Skoulidas A
    Langmuir; 2007 Mar; 23(6):3106-9. PubMed ID: 17279780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. II. Adsorption of atomic and molecular fluids in a porous material.
    Desgranges C; Delhommelle J
    J Chem Phys; 2012 May; 136(18):184108. PubMed ID: 22583278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.