BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 20540422)

  • 1. Agaricus bisporus as a source of tyrosinase for phenol detection for future biosensor development.
    Silva LM; Salgado AM; Coelho MA
    Environ Technol; 2010 May; 31(6):611-6. PubMed ID: 20540422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal.
    Kameda E; Langone MA; Coelho MA
    Environ Technol; 2006 Nov; 27(11):1209-15. PubMed ID: 17203602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenol determination by an amperométrico biosensor based on lyophilized mushroom (Agaricus bisporus) tissue.
    Silva LM; de Mello AC; Salgado AM
    Environ Technol; 2014; 35(5-8):1012-7. PubMed ID: 24645485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an amperometric biosensor for phenol detection.
    Silva LM; Salgado AM; Coelho MA
    Environ Technol; 2011 Apr; 32(5-6):493-7. PubMed ID: 21877529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: investigation of certain phenolic compounds and some inhibitor effects.
    Topçu S; Sezgintürk MK; Dinçkaya E
    Biosens Bioelectron; 2004 Oct; 20(3):592-7. PubMed ID: 15494244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenol biosensor based on hydrogel microarrays entrapping tyrosinase and quantum dots.
    Jang E; Son KJ; Kim B; Koh WG
    Analyst; 2010 Nov; 135(11):2871-8. PubMed ID: 20852777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds.
    Lu L; Zhang L; Zhang X; Huan S; Shen G; Yu R
    Anal Chim Acta; 2010 Apr; 665(2):146-51. PubMed ID: 20417324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D-sorbitol cinnamic ester.
    Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA
    J Biotechnol; 2006 Nov; 126(3):295-303. PubMed ID: 16730834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode.
    Zhou YL; Tian RH; Zhi JF
    Biosens Bioelectron; 2007 Jan; 22(6):822-8. PubMed ID: 16621510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved electrochemical analysis of neuropathy target esterase activity by a tyrosinase carbon paste electrode modified by 1-methoxyphenazine methosulfate.
    Sokolovskaya LG; Sigolaeva LV; Eremenko AV; Gachok IV; Makhaeva GF; Strakhova NN; Malygin VV; Richardson RJ; Kurochkin IN
    Biotechnol Lett; 2005 Aug; 27(16):1211-8. PubMed ID: 16158266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles.
    Li YF; Liu ZM; Liu YL; Yang YH; Shen GL; Yu RQ
    Anal Biochem; 2006 Feb; 349(1):33-40. PubMed ID: 16384546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do copper ions activate tyrosinase enzyme? A biosensor model for the solution.
    Akyilmaz E; Yorganci E; Asav E
    Bioelectrochemistry; 2010 Jun; 78(2):155-60. PubMed ID: 19840905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor.
    Alarcón G; Guix M; Ambrosi A; Ramirez Silva MT; Palomar Pardave ME; Merkoçi A
    Nanotechnology; 2010 Jun; 21(24):245502. PubMed ID: 20498520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: potential problems affecting tyrosinase activity and inhibition studies.
    Flurkey A; Cooksey J; Reddy A; Spoonmore K; Rescigno A; Inlow J; Flurkey WH
    J Agric Food Chem; 2008 Jun; 56(12):4760-8. PubMed ID: 18500813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles.
    Carralero V; Mena ML; Gonzalez-Cortés A; Yáñez-Sedeño P; Pingarrón JM
    Biosens Bioelectron; 2006 Dec; 22(5):730-6. PubMed ID: 16569498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a paper-type tyrosinase biosensor for detection of phenolic compounds.
    Şenyurt Ö; Eyidoğan F; Yılmaz R; Öz MT; Özalp VC; Arıca Y; Öktem HA
    Biotechnol Appl Biochem; 2015; 62(1):132-6. PubMed ID: 24847915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds.
    Arecchi A; Scampicchio M; Drusch S; Mannino S
    Anal Chim Acta; 2010 Feb; 659(1-2):133-6. PubMed ID: 20103115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection.
    Guix M; Pérez-López B; Sahin M; Roldán M; Ambrosi A; Merkoçi A
    Analyst; 2010 Aug; 135(8):1918-25. PubMed ID: 20532304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in structure-function relationships of tyrosinase from Agaricus bisporus - investigation on heat-induced conformational changes.
    Ioniţă E; Aprodu I; Stănciuc N; Râpeanu G; Bahrim G
    Food Chem; 2014 Aug; 156():129-36. PubMed ID: 24629948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosinase immobilization on ZnO nanorods for phenol detection.
    Gu BX; Xu CX; Zhu GP; Liu SQ; Chen LY; Li XS
    J Phys Chem B; 2009 Jan; 113(1):377-81. PubMed ID: 19067557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.