These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 20540498)
21. Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding. Das TK; Mazumdar S; Mitra S Eur J Biochem; 1998 Jun; 254(3):662-70. PubMed ID: 9688280 [TBL] [Abstract][Full Text] [Related]
22. From metmyoglobin to deoxy myoglobin: relaxations of an intermediate state. Lamb DC; Ostermann A; Prusakov VE; Parak FG Eur Biophys J; 1998; 27(2):113-25. PubMed ID: 10950634 [TBL] [Abstract][Full Text] [Related]
23. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin. Yang AS; Honig B J Mol Biol; 1994 Apr; 237(5):602-14. PubMed ID: 8158640 [TBL] [Abstract][Full Text] [Related]
25. The Interplay between Molten Globules and Heme Disassociation Defines Human Hemoglobin Disassembly. Samuel PP; White MA; Ou WC; Case DA; Phillips GN; Olson JS Biophys J; 2020 Mar; 118(6):1381-1400. PubMed ID: 32075750 [TBL] [Abstract][Full Text] [Related]
26. A water network within a protein: temperature-dependent water ligation in H64V-metmyoglobin and relaxation to deoxymyoglobin. Engler N; Prusakov V; Ostermann A; Parak FG Eur Biophys J; 2003 Feb; 31(8):595-607. PubMed ID: 12582819 [TBL] [Abstract][Full Text] [Related]
27. The D-helix in myoglobin and in the beta subunit of hemoglobin is required for the retention of heme. Whitaker TL; Berry MB; Ho EL; Hargrove MS; Phillips GN; Komiyama NH; Nagai K; Olson JS Biochemistry; 1995 Jul; 34(26):8221-6. PubMed ID: 7599114 [TBL] [Abstract][Full Text] [Related]
28. Influence of proximal side mutations on the molecular and electronic structure of cyanomet myoglobin: an 1H NMR study. Wu Y; Chien EY; Sligar SG; La Mar GN Biochemistry; 1998 May; 37(19):6979-90. PubMed ID: 9578585 [TBL] [Abstract][Full Text] [Related]
29. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles. Ionescu RM; Smith VF; O'Neill JC; Matthews CR Biochemistry; 2000 Aug; 39(31):9540-50. PubMed ID: 10924151 [TBL] [Abstract][Full Text] [Related]
30. 1H-NMR study of the mechanism of assembly and equilibrium heme orientation of sperm whale myoglobin reconstituted with protohemin type-isomers. Hauksson JB; La Mar GN; Pande U; Pandey RK; Parish DW; Singh JP; Smith KM Biochim Biophys Acta; 1990 Nov; 1041(2):186-94. PubMed ID: 2265204 [TBL] [Abstract][Full Text] [Related]
31. A new folding intermediate of apomyoglobin from Aplysia limacina: stepwise formation of a molten globule. Staniforth RA; Giannini S; Bigotti MG; Cutruzzolà F; Travaglini-Allocatelli C; Brunori M J Mol Biol; 2000 Apr; 297(5):1231-44. PubMed ID: 10764586 [TBL] [Abstract][Full Text] [Related]
32. Protein electronic conductors: hemin-substrate bonding dictates transport mechanism and efficiency across myoglobin. Raichlin S; Pecht I; Sheves M; Cahen D Angew Chem Int Ed Engl; 2015 Oct; 54(42):12379-83. PubMed ID: 26346916 [TBL] [Abstract][Full Text] [Related]
33. Fluorescence study of the conformational properties of myoglobin structure. 2. pH- and ligand-induced conformational changes in ferric- and ferrousmyoglobins. Postnikova GB; Komarov YE; Yumakova EM Eur J Biochem; 1991 May; 198(1):233-9. PubMed ID: 2040284 [TBL] [Abstract][Full Text] [Related]
34. Structural comparison of apomyoglobin and metaquomyoglobin: pH titration of histidines by NMR spectroscopy. Cocco MJ; Kao YH; Phillips AT; Lecomte JT Biochemistry; 1992 Jul; 31(28):6481-91. PubMed ID: 1633160 [TBL] [Abstract][Full Text] [Related]
35. Heme and cysteine microenvironments of tuna apomyoglobin. Evidence of two independent unfolding regions. Colonna G; Balestrieri C; Bismuto E; Servillo L; Irace G Biochemistry; 1982 Jan; 21(2):212-5. PubMed ID: 7074010 [TBL] [Abstract][Full Text] [Related]
36. Spectroscopic studies of myoglobin at low pH: heme structure and ligation. Sage JT; Morikis D; Champion PM Biochemistry; 1991 Feb; 30(5):1227-37. PubMed ID: 1991102 [TBL] [Abstract][Full Text] [Related]
37. Acid-induced denaturation of myoglobin studied by time-resolved electrospray ionization mass spectrometry. Konermann L; Rosell FI; Mauk AG; Douglas DJ Biochemistry; 1997 May; 36(21):6448-54. PubMed ID: 9174361 [TBL] [Abstract][Full Text] [Related]
38. Solution NMR determination of the seating(s) of meso-nitro-etioheme-1 in myoglobin: implications for steric constraints to meso position access in heme degradation by coupled oxidation. Wang J; Li Y; Ma D; Kalish H; Balch AL; La Mar GN J Am Chem Soc; 2001 Aug; 123(33):8080-8. PubMed ID: 11506564 [TBL] [Abstract][Full Text] [Related]
39. Optical spectroscopic observation of a metastable form of sperm whale myoglobin generated by reconstitution. Gebe JA; Peyton DH; Peyton JA Biochem Biophys Res Commun; 1989 May; 161(1):290-4. PubMed ID: 2730660 [TBL] [Abstract][Full Text] [Related]
40. Phenylalanine substitution at site B10 (L29F) inhibits metmyoglobin formation and myoglobin-mediated lipid oxidation in washed fish muscle: mechanistic implications. Richards MP; Cai H; Grunwald EW J Agric Food Chem; 2009 Sep; 57(17):7997-8002. PubMed ID: 19678685 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]