These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 20540498)
41. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Elöve GA; Bhuyan AK; Roder H Biochemistry; 1994 Jun; 33(22):6925-35. PubMed ID: 8204626 [TBL] [Abstract][Full Text] [Related]
42. Protozoan myoglobin from Paramecium caudatum. Its autoxidation reaction and hemichrome formation. Tsubamoto Y; Matsuoka A; Yusa K; Shikama K Eur J Biochem; 1990 Oct; 193(1):55-9. PubMed ID: 2226448 [TBL] [Abstract][Full Text] [Related]
43. Efficacy of metmyoglobin and hemin as a catalyst of lipid peroxidation determined by using a new testing system. Roginsky V; Zheltukhina GA; Nebolsin VE J Agric Food Chem; 2007 Aug; 55(16):6798-806. PubMed ID: 17625877 [TBL] [Abstract][Full Text] [Related]
44. Fluorescence study of the conformational properties of myoglobin structure. 3. pH-dependent changes in porphyrin and tryptophan fluorescence of the complex of sperm whale apomyoglobin with protoporphyrin IX; the role of the porphyrin macrocycle and iron in formation of native myoglobin structure. Postnikova GB; Yumakova EM Eur J Biochem; 1991 May; 198(1):241-6. PubMed ID: 2040285 [TBL] [Abstract][Full Text] [Related]
45. Kinetic mechanism of folding and unfolding of Rhodobacter capsulatus cytochrome c2. Sauder JM; MacKenzie NE; Roder H Biochemistry; 1996 Dec; 35(51):16852-62. PubMed ID: 8988024 [TBL] [Abstract][Full Text] [Related]
46. Heme reduction by intramolecular electron transfer in cysteine mutant myoglobin under carbon monoxide atmosphere. Hirota S; Azuma K; Fukuba M; Kuroiwa S; Funasaki N Biochemistry; 2005 Aug; 44(30):10322-7. PubMed ID: 16042409 [TBL] [Abstract][Full Text] [Related]
47. A Soret marker band for four-coordinate ferric heme proteins from absorption spectra of isolated Fe(III)-Heme+ and Fe(III)-Heme+(His) ions in vacuo. Lykkegaard MK; Ehlerding A; Hvelplund P; Kadhane U; Kirketerp MB; Nielsen SB; Panja S; Wyer JA; Zettergren H J Am Chem Soc; 2008 Sep; 130(36):11856-7. PubMed ID: 18700762 [TBL] [Abstract][Full Text] [Related]
48. Engineering peroxidase activity in myoglobin: the haem cavity structure and peroxide activation in the T67R/S92D mutant and its derivative reconstituted with protohaemin-l-histidine. Roncone R; Monzani E; Murtas M; Battaini G; Pennati A; Sanangelantoni AM; Zuccotti S; Bolognesi M; Casella L Biochem J; 2004 Feb; 377(Pt 3):717-24. PubMed ID: 14563209 [TBL] [Abstract][Full Text] [Related]
49. A 1H-NMR study of electronic structure of the active site of Galeorhinus japonicus metmyoglobin. Yamamoto Y; Osawa A; Inoue Y; Chûjô R; Suzuki T Eur J Biochem; 1990 Aug; 192(1):225-9. PubMed ID: 2401293 [TBL] [Abstract][Full Text] [Related]
50. Proton NMR investigation of the reconstitution of equine myoglobin with hemin dicyanide. Evidence for late formation of the proximal His93F8-iron bond. Yee S; Peyton DH FEBS Lett; 1991 Sep; 290(1-2):119-22. PubMed ID: 1915862 [TBL] [Abstract][Full Text] [Related]
51. 19F NMR study of protein-induced rhombic perturbations on the electronic structure of the active site of myoglobin. Yamamoto Y; Hirai Y; Suzuki A J Biol Inorg Chem; 2000 Aug; 5(4):455-62. PubMed ID: 10968616 [TBL] [Abstract][Full Text] [Related]
52. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: spectroscopic description of the native, intermediate, and unfolded states. Nallamsetty S; Dubey VK; Pande M; Ambasht PK; Jagannadham MV Biochimie; 2007 Nov; 89(11):1416-24. PubMed ID: 17658212 [TBL] [Abstract][Full Text] [Related]
53. 1H NMR study of labile proton exchange in the heme cavity as a probe for the potential ligand entry channel in myoglobin. Lecomte JT; La Mar GN Biochemistry; 1985 Dec; 24(25):7388-95. PubMed ID: 4084588 [TBL] [Abstract][Full Text] [Related]
54. Influence of steric factors on oxygen binding. I. Studies on 2,4-diisopropyldeuteroheme-myoglobin. Ogoshi H; Kawabe K; Mitachi S; Yoshida ZI; Imai K; Tyuma I Biochim Biophys Acta; 1979 Dec; 581(2):266-75. PubMed ID: 42447 [TBL] [Abstract][Full Text] [Related]
56. Elucidation of molecular mechanism of stability of the heme-regulated eIF2α kinase upon binding of its ligand, hemin in its catalytic kinase domain. Bhavnani V; Kaviraj S; Panigrahi P; Suresh CG; Yapara S; Pal J J Biomol Struct Dyn; 2018 Aug; 36(11):2845-2861. PubMed ID: 28814160 [TBL] [Abstract][Full Text] [Related]
57. Assessing Low Redox Stability of Myoglobin Relative to Rapid Hemin Loss from Hemoglobin. Cai H; Tatiyaborworntham N; Yin J; Richards MP J Food Sci; 2016 Jan; 81(1):C42-8. PubMed ID: 26606132 [TBL] [Abstract][Full Text] [Related]
58. Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus. Liu M; Tanaka WN; Zhu H; Xie G; Dooley DM; Lei B J Biol Chem; 2008 Mar; 283(11):6668-76. PubMed ID: 18184657 [TBL] [Abstract][Full Text] [Related]
59. Influence of the heme distal pocket on nitrite binding orientation and reactivity in Sperm Whale myoglobin. Tse W; Whitmore N; Cheesman MR; Watmough NJ Biochem J; 2021 Feb; 478(4):927-942. PubMed ID: 33543749 [TBL] [Abstract][Full Text] [Related]
60. [Spectral Study on Coordination Reaction Between metMyoglobin and Nitric Oxide]. Tang Q; Zhang Y; Cao HY; Shi SS; Zheng XF Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1967-72. PubMed ID: 26717761 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]