BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20540536)

  • 1. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase.
    Shin S; Abu Tarboush N; Davidson VL
    Biochemistry; 2010 Jul; 49(27):5810-6. PubMed ID: 20540536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine .
    Abu Tarboush N; Jensen LM; Feng M; Tachikawa H; Wilmot CM; Davidson VL
    Biochemistry; 2010 Nov; 49(45):9783-91. PubMed ID: 20929212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.
    Abu Tarboush N; Yukl ET; Shin S; Feng M; Wilmot CM; Davidson VL
    Biochemistry; 2013 Sep; 52(37):6358-67. PubMed ID: 23952537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.
    Davidson VL; Liu A
    Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Lee S; Shin S; Li X; Davidson VL
    Biochemistry; 2009 Mar; 48(11):2442-7. PubMed ID: 19196017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone.
    Davidson VL; Wilmot CM
    Annu Rev Biochem; 2013; 82():531-50. PubMed ID: 23746262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL
    Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state.
    Shin S; Feng M; Li C; Williamson HR; Choi M; Wilmot CM; Davidson VL
    Biochim Biophys Acta; 2015 Aug; 1847(8):709-16. PubMed ID: 25896561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG.
    Feng M; Jensen LM; Yukl ET; Wei X; Liu A; Wilmot CM; Davidson VL
    Biochemistry; 2012 Feb; 51(8):1598-606. PubMed ID: 22299652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
    Shin S; Davidson VL
    Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.
    Geng J; Dornevil K; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9639-44. PubMed ID: 23720312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation.
    Yukl ET; Goblirsch BR; Davidson VL; Wilmot CM
    Biochemistry; 2011 Apr; 50(14):2931-8. PubMed ID: 21355604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone.
    Li X; Fu R; Liu A; Davidson VL
    Biochemistry; 2008 Mar; 47(9):2908-12. PubMed ID: 18220357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of Trp(93) of MauG to tyrosine causes loss of bound Ca(2+) and alters the kinetic mechanism of tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Davidson VL
    Biochem J; 2013 Nov; 456(1):129-37. PubMed ID: 24024544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MauG: a di-heme enzyme required for methylamine dehydrogenase maturation.
    Wilmot CM; Yukl ET
    Dalton Trans; 2013 Mar; 42(9):3127-35. PubMed ID: 23086017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suicide inactivation of MauG during reaction with O(2) or H(2)O(2) in the absence of its natural protein substrate.
    Shin S; Lee S; Davidson VL
    Biochemistry; 2009 Oct; 48(42):10106-12. PubMed ID: 19788236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex.
    Jensen LM; Sanishvili R; Davidson VL; Wilmot CM
    Science; 2010 Mar; 327(5971):1392-4. PubMed ID: 20223990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of electron tunneling and hole hopping reactions between different forms of MauG and methylamine dehydrogenase within a natural protein complex.
    Choi M; Shin S; Davidson VL
    Biochemistry; 2012 Sep; 51(35):6942-9. PubMed ID: 22897160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.