These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2054056)

  • 1. Irreversible inhibition of a monoclonal antibody by a nitrophenyl ester.
    Rao G; Philipp M
    J Protein Chem; 1991 Feb; 10(1):117-22. PubMed ID: 2054056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synthetic peptide corresponding to the phosphorylcholine (PC)-binding region of human C-reactive protein possesses the TEPC-15 myeloma PC-idiotype.
    Swanson SJ; Lin BF; Mullenix MC; Mortensen RF
    J Immunol; 1991 Mar; 146(5):1596-601. PubMed ID: 1704398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular studies of subspecificity differences among phosphorylcholine-binding mouse myeloma antibodies using 31P nuclear magnetic resonance.
    Goetze AM; Richards JH
    Biochemistry; 1978 May; 17(9):1733-9. PubMed ID: 26385
    [No Abstract]   [Full Text] [Related]  

  • 4. Binding of human C-reactive protein (CRP) to plasma fibronectin occurs via the phosphorylcholine-binding site.
    Tseng J; Mortensen RF
    Mol Immunol; 1988 Aug; 25(8):679-86. PubMed ID: 2460754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function relations in phosphorylcholine-binding mouse myeloma proteins.
    Goetze AM; Richards JH
    Proc Natl Acad Sci U S A; 1977 May; 74(5):2109-12. PubMed ID: 405672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pneumococcal phosphorylcholine esterase, Pce, contains a metal binuclear center that is essential for substrate binding and catalysis.
    Lagartera L; González A; Hermoso JA; Saíz JL; García P; García JL; Menéndez M
    Protein Sci; 2005 Dec; 14(12):3013-24. PubMed ID: 16260756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative hydrolysis of sphingomyelin and 2-N-(hexadecanoyl)-amino-4-nitrophenyl-phosphorylcholine by normal human brain homogenate at acid and neutral pH.
    Levade T; Salvayre R; Douste-Blazy L
    J Neurochem; 1983 Jun; 40(6):1762-4. PubMed ID: 6304255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical reactivity at an antibody binding site elicited by mechanistic design of a synthetic antigen.
    Tramontano A; Janda KD; Lerner RA
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6736-40. PubMed ID: 3462723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of multivalency in the affinity chromatography of antibodies. Appendix: Derivation and evaluation of equations for independent bivalent interacting systems in quantitative affinity chromatography.
    Eilat D; Chaiken IM; McCormick WM
    Biochemistry; 1979 Mar; 18(5):790-5. PubMed ID: 420816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific suppression of the antibody response by antibodies to receptors.
    Cosenza H; Köhler H
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2701-5. PubMed ID: 4403565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific isolation and characterization of antibody directed to binding site antigenic determinants.
    Claflin JL; Davie JM
    J Immunol; 1975 Jan; 114(1 Pt 1):70-5. PubMed ID: 46246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A catalytic antibody uses a multistep kinetic sequence.
    Benkovic SJ; Adams J; Janda KD; Lerner RA
    Ciba Found Symp; 1991; 159():4-9; discussion 9-12. PubMed ID: 1959451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific H chain junctional diversity may be required for non-T15 antibodies to bind phosphorylcholine.
    Feeney AJ; Clarke SH; Mosier DE
    J Immunol; 1988 Aug; 141(4):1267-72. PubMed ID: 3135325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody combining sites can be mimicked synthetically. Surface-simulation synthesis of the phosphorylcholine-combining site of myeloma protein M-603.
    Kazim AL; Atassi MZ
    Biochem J; 1980 Jun; 187(3):661-6. PubMed ID: 6204636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The binding of phosphorylcholine-carrying antigens to the anti-phosphorylcholine monoclonal antibody TEPC 15. A fluorescence spectroscopic study.
    Urbaneja MA; Chapman D
    Biochim Biophys Acta; 1989 Sep; 998(1):85-90. PubMed ID: 2675981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance studies of the binding site interactions between phosphorylcholine and specific mouse myeloma immunoglobulin.
    Goetze AM; Richards JH
    Biochemistry; 1977 Jan; 16(2):228-32. PubMed ID: 556944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a catalytic antibody for stereoselective ester hydrolysis--a catalytic residue and mode of product inhibition.
    Nakatani T; Umeshita R; Hiratake J; Shinzaki A; Suzuki T; Nakajima H; Oda J
    Bioorg Med Chem; 1994 Jun; 2(6):457-68. PubMed ID: 8000868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phosphorylcholine idiotype related to TEPC 15 in mice infected with Ascaris suum.
    Brown AR; Crandall CA
    J Immunol; 1976 Apr; 116(4):1105-9. PubMed ID: 1254963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The actinidin-catalysed hydrolysis of N-a-benzyloxycarbonyl-L-lysine p-nitrophenyl ester. pH dependence and mechanism.
    Boland MJ; Hardman MJ
    Eur J Biochem; 1973 Jul; 36(2):575-82. PubMed ID: 4730966
    [No Abstract]   [Full Text] [Related]  

  • 20. Immune response to phosphorylcholine. I. Characterization of the epitope-specific antibody.
    Kluskens L; Lee W; Köhler H
    Eur J Immunol; 1976 Jul; 5(7):489-96. PubMed ID: 61872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.