BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 20540568)

  • 1. Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques.
    Nanjo Y; Skultety L; Ashraf Y; Komatsu S
    J Proteome Res; 2010 Aug; 9(8):3989-4002. PubMed ID: 20540568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques.
    Komatsu S; Yamamoto A; Nakamura T; Nouri MZ; Nanjo Y; Nishizawa K; Furukawa K
    J Proteome Res; 2011 Sep; 10(9):3993-4004. PubMed ID: 21766870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of plasma membrane proteome in soybean and application to flooding stress response.
    Komatsu S; Wada T; Abaléa Y; Nouri MZ; Nanjo Y; Nakayama N; Shimamura S; Yamamoto R; Nakamura T; Furukawa K
    J Proteome Res; 2009 Oct; 8(10):4487-99. PubMed ID: 19658398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding.
    Shi F; Yamamoto R; Shimamura S; Hiraga S; Nakayama N; Nakamura T; Yukawa K; Hachinohe M; Matsumoto H; Komatsu S
    Phytochemistry; 2008 Apr; 69(6):1295-303. PubMed ID: 18308350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome analysis of early-stage soybean seedlings under flooding stress.
    Hashiguchi A; Sakata K; Komatsu S
    J Proteome Res; 2009 Apr; 8(4):2058-69. PubMed ID: 19714819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.
    Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P
    J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques.
    Komatsu S; Yamamoto R; Nanjo Y; Mikami Y; Yunokawa H; Sakata K
    J Proteome Res; 2009 Oct; 8(10):4766-78. PubMed ID: 19658438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach.
    Ahsan N; Donnart T; Nouri MZ; Komatsu S
    J Proteome Res; 2010 Aug; 9(8):4189-204. PubMed ID: 20540562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings.
    Nanjo Y; Skultety L; Uváčková L; Klubicová K; Hajduch M; Komatsu S
    J Proteome Res; 2012 Jan; 11(1):372-85. PubMed ID: 22136409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.
    Nanjo Y; Nakamura T; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4785-98. PubMed ID: 23659366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of proteomic changes in roots of soybean seedlings during recovery after flooding.
    Salavati A; Khatoon A; Nanjo Y; Komatsu S
    J Proteomics; 2012 Jan; 75(3):878-93. PubMed ID: 22037232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative proteomics analysis in roots of soybean to compatible symbiotic bacteria under flooding stress.
    Khatoon A; Rehman S; Salavati A; Komatsu S
    Amino Acids; 2012 Dec; 43(6):2513-25. PubMed ID: 22692703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches.
    Nouri MZ; Komatsu S
    Proteomics; 2010 May; 10(10):1930-45. PubMed ID: 20209511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis.
    Komatsu S; Sugimoto T; Hoshino T; Nanjo Y; Furukawa K
    Amino Acids; 2010 Mar; 38(3):729-38. PubMed ID: 19333721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of cucumber seedling roots subjected to salt stress.
    Du CX; Fan HF; Guo SR; Tezuka T; Li J
    Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.
    Khatoon A; Rehman S; Hiraga S; Makino T; Komatsu S
    J Proteomics; 2012 Oct; 75(18):5706-23. PubMed ID: 22850269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.
    Khan MN; Sakata K; Komatsu S
    J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.
    Yin X; Sakata K; Nanjo Y; Komatsu S
    J Proteomics; 2014 Jun; 106():1-16. PubMed ID: 24732726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.
    Wang X; Oh M; Sakata K; Komatsu S
    J Proteomics; 2016 Jan; 130():42-55. PubMed ID: 26376099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.