BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20540583)

  • 1. Impact of distant charge reversals within a robust beta-barrel protein pore.
    Mohammad MM; Movileanu L
    J Phys Chem B; 2010 Jul; 114(26):8750-9. PubMed ID: 20540583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
    Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE
    Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues.
    Jung Y; Cheley S; Braha O; Bayley H
    Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular ionic interactions serve as a possible switch for stem release in the staphylococcal bi-component toxin for β-barrel pore assembly.
    Takeda K; Tanaka Y; Abe N; Kaneko J
    Toxicon; 2018 Dec; 155():43-48. PubMed ID: 30312693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous oligomerization of a staphylococcal alpha-hemolysin conformationally constrained by removal of residues that form the transmembrane beta-barrel.
    Cheley S; Malghani MS; Song L; Hobaugh M; Gouaux JE; Yang J; Bayley H
    Protein Eng; 1997 Dec; 10(12):1433-43. PubMed ID: 9543005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically engineered metal ion binding sites on the outside of a Channel's transmembrane beta-barrel.
    Kasianowicz JJ; Burden DL; Han LC; Cheley S; Bayley H
    Biophys J; 1999 Feb; 76(2):837-45. PubMed ID: 9929485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma-haemolysins in lipid membranes.
    Comai M; Dalla Serra M; Coraiola M; Werner S; Colin DA; Monteil H; Prévost G; Menestrina G
    Mol Microbiol; 2002 Jun; 44(5):1251-67. PubMed ID: 12068809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional protein pore with a "retro" transmembrane domain.
    Cheley S; Braha O; Lu X; Conlan S; Bayley H
    Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore.
    Japrung D; Henricus M; Li Q; Maglia G; Bayley H
    Biophys J; 2010 May; 98(9):1856-63. PubMed ID: 20441749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of peptides with a protein pore.
    Movileanu L; Schmittschmitt JP; Scholtz JM; Bayley H
    Biophys J; 2005 Aug; 89(2):1030-45. PubMed ID: 15923222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
    Yamashita K; Kawai Y; Tanaka Y; Hirano N; Kaneko J; Tomita N; Ohta M; Kamio Y; Yao M; Tanaka I
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17314-9. PubMed ID: 21969538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule electrophoresis of beta-hairpin peptides by electrical recordings and Langevin dynamics simulations.
    Goodrich CP; Kirmizialtin S; Huyghues-Despointes BM; Zhu A; Scholtz JM; Makarov DE; Movileanu L
    J Phys Chem B; 2007 Apr; 111(13):3332-5. PubMed ID: 17388500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of listeriolysin O pores and its regulation by pH and unique histidine [corrected].
    Podobnik M; Marchioretto M; Zanetti M; Bavdek A; Kisovec M; Cajnko MM; Lunelli L; Dalla Serra M; Anderluh G
    Sci Rep; 2015 Apr; 5():9623. PubMed ID: 25854672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cluster-forming property correlated with hemolytic activity by staphylococcal γ-hemolysin transmembrane pores.
    Tomita N; Abe K; Kamio Y; Ohta M
    FEBS Lett; 2011 Nov; 585(21):3452-6. PubMed ID: 22001207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalyzing the translocation of polypeptides through attractive interactions.
    Wolfe AJ; Mohammad MM; Cheley S; Bayley H; Movileanu L
    J Am Chem Soc; 2007 Nov; 129(45):14034-41. PubMed ID: 17949000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pore-forming protein with a metal-actuated switch.
    Walker B; Kasianowicz J; Krishnasastry M; Bayley H
    Protein Eng; 1994 May; 7(5):655-62. PubMed ID: 8073035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arresting and releasing Staphylococcal alpha-hemolysin at intermediate stages of pore formation by engineered disulfide bonds.
    Kawate T; Gouaux E
    Protein Sci; 2003 May; 12(5):997-1006. PubMed ID: 12717022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subunit dimers of alpha-hemolysin expand the engineering toolbox for protein nanopores.
    Hammerstein AF; Jayasinghe L; Bayley H
    J Biol Chem; 2011 Apr; 286(16):14324-34. PubMed ID: 21324910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capture of a single molecule in a nanocavity.
    Gu LQ; Cheley S; Bayley H
    Science; 2001 Jan; 291(5504):636-40. PubMed ID: 11158673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-terminal amino-latch region of Hlg2 component of staphylococcal bi-component γ-haemolysin is dispensable for prestem release to form β-barrel pores.
    Takeda K; Tanaka Y; Kaneko J
    J Biochem; 2020 Oct; 168(4):349-354. PubMed ID: 32330256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.