BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20540668)

  • 21. Membrane Ultrastructure and T Cell Activation.
    Pettmann J; Santos AM; Dushek O; Davis SJ
    Front Immunol; 2018; 9():2152. PubMed ID: 30319617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The immunological synapse: a cause or consequence of T-cell receptor triggering?
    Alarcón B; Mestre D; Martínez-Martín N
    Immunology; 2011 Aug; 133(4):420-5. PubMed ID: 21631496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microdomains in the membrane landscape shape antigen-presenting cell function.
    Zuidscherwoude M; de Winde CM; Cambi A; van Spriel AB
    J Leukoc Biol; 2014 Feb; 95(2):251-63. PubMed ID: 24168856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Super-resolution microscopy of the immunological synapse.
    Rossy J; Pageon SV; Davis DM; Gaus K
    Curr Opin Immunol; 2013 Jun; 25(3):307-12. PubMed ID: 23746999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rafting MHC-II domains in the APC (presynaptic) plasma membrane and the thresholds for T-cell activation and immunological synapse formation.
    Gombos I; Detre C; Vámosi G; Matkó J
    Immunol Lett; 2004 Mar; 92(1-2):117-24. PubMed ID: 15081535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studying Dynamic Plasma Membrane Binding of TCR-CD3 Chains During Immunological Synapse Formation Using Donor-Quenching FRET and FLIM-FRET.
    Gagnon E; Connolly A; Dobbins J; Wucherpfennig KW
    Methods Mol Biol; 2017; 1584():259-289. PubMed ID: 28255707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation.
    Kim W; Fan YY; Barhoumi R; Smith R; McMurray DN; Chapkin RS
    J Immunol; 2008 Nov; 181(9):6236-43. PubMed ID: 18941214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse.
    Lasserre R; Charrin S; Cuche C; Danckaert A; Thoulouze MI; de Chaumont F; Duong T; Perrault N; Varin-Blank N; Olivo-Marin JC; Etienne-Manneville S; Arpin M; Di Bartolo V; Alcover A
    EMBO J; 2010 Jul; 29(14):2301-14. PubMed ID: 20551903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses.
    Rocha-Perugini V; Zamai M; González-Granado JM; Barreiro O; Tejera E; Yañez-Mó M; Caiolfa VR; Sanchez-Madrid F
    Mol Cell Biol; 2013 Sep; 33(18):3644-58. PubMed ID: 23858057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells.
    Kaizuka Y; Douglass AD; Varma R; Dustin ML; Vale RD
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20296-301. PubMed ID: 18077330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The immunological synapse: a dynamic platform for local signaling.
    Krummel MF; Cahalan MD
    J Clin Immunol; 2010 May; 30(3):364-72. PubMed ID: 20390326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Are rafts involved in T-cell receptor signalling? Introduction to the Talking Point on the involvement of lipid rafts in T-cell activation.
    de Wet B; Harder T
    EMBO Rep; 2008 Jun; 9(6):523-4. PubMed ID: 18516086
    [No Abstract]   [Full Text] [Related]  

  • 33. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse.
    Purbhoo MA; Liu H; Oddos S; Owen DM; Neil MA; Pageon SV; French PM; Rudd CE; Davis DM
    Sci Signal; 2010 May; 3(121):ra36. PubMed ID: 20460647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analyzing T-Cell Plasma Membrane Lipids by Flow Cytometry.
    Waddington KE; Pineda-Torra I; Jury EC
    Methods Mol Biol; 2019; 1951():209-216. PubMed ID: 30825155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comment on "Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse".
    Bittner S; Wiendl H; Meuth SG
    Immunol Lett; 2009 Aug; 125(2):156-7. PubMed ID: 19595706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustering of MHC-peptide complexes prior to their engagement in the immunological synapse: lipid raft and tetraspan microdomains.
    Vogt AB; Spindeldreher S; Kropshofer H
    Immunol Rev; 2002 Nov; 189():136-51. PubMed ID: 12445271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recruitment of transferrin receptor to immunological synapse in response to TCR engagement.
    Batista A; Millán J; Mittelbrunn M; Sánchez-Madrid F; Alonso MA
    J Immunol; 2004 Jun; 172(11):6709-14. PubMed ID: 15153487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.
    Choudhuri K; Llodrá J; Roth EW; Tsai J; Gordo S; Wucherpfennig KW; Kam LC; Stokes DL; Dustin ML
    Nature; 2014 Mar; 507(7490):118-23. PubMed ID: 24487619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement.
    Fenard D; Yonemoto W; de Noronha C; Cavrois M; Williams SA; Greene WC
    J Immunol; 2005 Nov; 175(9):6050-7. PubMed ID: 16237100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.
    Gardell JL; Parker DC
    PLoS One; 2017; 12(10):e0186573. PubMed ID: 29023539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.