BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20540928)

  • 1. Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin.
    Phillips LR; Cole CD; Hendershot RJ; Cotten M; Cross TA; Busath DD
    Biophys J; 1999 Nov; 77(5):2492-501. PubMed ID: 20540928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.
    Rokitskaya TI; Kotova EA; Antonenko YN
    Biophys J; 2002 Feb; 82(2):865-73. PubMed ID: 11806928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents.
    Thompson N; Thompson G; Cole CD; Cotten M; Cross TA; Busath DD
    Biophys J; 2001 Sep; 81(3):1245-54. PubMed ID: 11509341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin.
    Anderson DG; Shirts RB; Cross TA; Busath DD
    Biophys J; 2001 Sep; 81(3):1255-64. PubMed ID: 11509342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of proton transfer in the water wire of dioxolane-linked gramicidin channels by lipid membranes.
    de Godoy CM; Cukierman S
    Biophys J; 2001 Sep; 81(3):1430-8. PubMed ID: 11509357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels.
    Busath DD; Thulin CD; Hendershot RW; Phillips LR; Maughan P; Cole CD; Bingham NC; Morrison S; Baird LC; Hendershot RJ; Cotten M; Cross TA
    Biophys J; 1998 Dec; 75(6):2830-44. PubMed ID: 9826605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of proton currents by methanol in a dioxolane-linked gramicidin A channel in different lipid bilayers.
    Quigley EP; Emerick AJ; Crumrine DS; Cukierman S
    Biophys J; 1998 Dec; 75(6):2811-20. PubMed ID: 9826603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents.
    Cole CD; Frost AS; Thompson N; Cotten M; Cross TA; Busath DD
    Biophys J; 2002 Oct; 83(4):1974-86. PubMed ID: 12324416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton permeation of lipid bilayers.
    Deamer DW
    J Bioenerg Biomembr; 1987 Oct; 19(5):457-79. PubMed ID: 2447068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton transfer in gramicidin water wires in phospholipid bilayers: attenuation by phosphoethanolamine.
    Chernyshev A; Cukierman S
    Biophys J; 2006 Jul; 91(2):580-7. PubMed ID: 16617081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conduction of protons in different stereoisomers of dioxolane-linked gramicidin A channels.
    Quigley EP; Quigley P; Crumrine DS; Cukierman S
    Biophys J; 1999 Nov; 77(5):2479-91. PubMed ID: 10545350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton conductance by the gramicidin water wire. Model for proton conductance in the F1F0 ATPases?
    Akeson M; Deamer DW
    Biophys J; 1991 Jul; 60(1):101-9. PubMed ID: 1715764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating dipoles for structure-function correlations in the gramicidin A channel.
    Cotten M; Tian C; Busath DD; Shirts RB; Cross TA
    Biochemistry; 1999 Jul; 38(29):9185-97. PubMed ID: 10413493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of peptide-membrane interactions to modulate single-file water transport through modified gramicidin channels.
    Portella G; Polupanow T; Zocher F; Boytsov DA; Pohl P; Diederichsen U; de Groot BL
    Biophys J; 2012 Oct; 103(8):1698-705. PubMed ID: 23083713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic view of activation energies of proton transfer in various gramicidin A channels.
    Chernyshev A; Cukierman S
    Biophys J; 2002 Jan; 82(1 Pt 1):182-92. PubMed ID: 11751307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure, cation binding, transport, and conductance of Gly15-gramicidin A incorporated into SDS micelles and PC/PG vesicles.
    Sham SS; Shobana S; Townsley LE; Jordan JB; Fernandez JQ; Andersen OS; Greathouse DV; Hinton JF
    Biochemistry; 2003 Feb; 42(6):1401-9. PubMed ID: 12578352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles.
    Jordan JB; Easton PL; Hinton JF
    Biophys J; 2005 Jan; 88(1):224-34. PubMed ID: 15501932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Trp side chains in tuning single proton conduction through gramicidin channels.
    Gowen JA; Markham JC; Morrison SE; Cross TA; Busath DD; Mapes EJ; Schumaker MF
    Biophys J; 2002 Aug; 83(2):880-98. PubMed ID: 12124271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding.
    Maruyama T; Takeuchi H
    Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.