These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 20541047)

  • 21. Regulation of hematopoiesis through adhesion receptors.
    Prosper F; Verfaillie CM
    J Leukoc Biol; 2001 Mar; 69(3):307-16. PubMed ID: 11261776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fibronectin increases both non-adherent cells and CFU-GM while collagen increases adherent cells in human normal long-term bone marrow cultures.
    Hassan HT; Sadovinkova EYu ; Drize NJ; Zander AR; Neth R
    Haematologia (Budap); 1997; 28(2):77-84. PubMed ID: 9283907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells.
    Cheng L; Qasba P; Vanguri P; Thiede MA
    J Cell Physiol; 2000 Jul; 184(1):58-69. PubMed ID: 10825234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone marrow-derived cells: the influence of aging and cellular senescence.
    Beauséjour C
    Handb Exp Pharmacol; 2007; (180):67-88. PubMed ID: 17554505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased longevity of hematopoiesis in continuous bone marrow cultures and adipocytogenesis in marrow stromal cells derived from Smad3(-/-) mice.
    Epperly MW; Cao S; Goff J; Shields D; Zhou S; Glowacki J; Greenberger JS
    Exp Hematol; 2005 Mar; 33(3):353-62. PubMed ID: 15730859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Proliferation and differentiation in megakaryopoiesis].
    Kanz L; Mertelsmann R
    Verh Dtsch Ges Pathol; 1990; 74():28-35. PubMed ID: 1708603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease.
    Heeschen C; Lehmann R; Honold J; Assmus B; Aicher A; Walter DH; Martin H; Zeiher AM; Dimmeler S
    Circulation; 2004 Apr; 109(13):1615-22. PubMed ID: 15037527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone lining cells and hematopoiesis: an electron microscopic study of canine bone marrow.
    Deldar A; Lewis H; Weiss L
    Anat Rec; 1985 Oct; 213(2):187-201. PubMed ID: 4073570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow.
    Lévesque JP; Winkler IG; Hendy J; Williams B; Helwani F; Barbier V; Nowlan B; Nilsson SK
    Stem Cells; 2007 Aug; 25(8):1954-65. PubMed ID: 17478585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone marrow microenvironmental changes in aged mice compromise V(D)J recombinase activity and B cell generation.
    Labrie JE; Borghesi L; Gerstein RM
    Semin Immunol; 2005 Oct; 17(5):347-55. PubMed ID: 15963731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of bone marrow fibroblasts and their significance in hematopoiesis.
    Nagao T
    Tokai J Exp Clin Med; 1987 Mar; 12(1):1-6. PubMed ID: 3329774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thrombopoietin mobilizes CD34+ cell subsets into peripheral blood and expands multilineage progenitors in bone marrow of cancer patients with normal hematopoiesis.
    Murray LJ; Luens KM; Estrada MF; Bruno E; Hoffman R; Cohen RL; Ashby MA; Vadhan-Raj S
    Exp Hematol; 1998 Mar; 26(3):207-16. PubMed ID: 9502616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells.
    Gurevitch O; Kurkalli BG; Prigozhina T; Kasir J; Gaft A; Slavin S
    Stem Cells; 2003; 21(5):588-97. PubMed ID: 12968113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies.
    Yu XF; Han ZC
    Histol Histopathol; 2006 May; 21(5):519-31. PubMed ID: 16493582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Bone metabolism and cardiovascular function update. Inter-communication between bone marrow hematopoiesis and skeletal/vascular network].
    Katayama Y
    Clin Calcium; 2014 Jul; 24(7):69-76. PubMed ID: 24976058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The bone marrow microenvironment in health and disease at a glance.
    Kumar R; Godavarthy PS; Krause DS
    J Cell Sci; 2018 Feb; 131(4):. PubMed ID: 29472498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concise review: From greenhouse to garden: the changing soil of the hematopoietic stem cell microenvironment during development.
    Mirshekar-Syahkal B; Fitch SR; Ottersbach K
    Stem Cells; 2014 Jul; 32(7):1691-700. PubMed ID: 24578221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alteration of classical and hematopoiesis specific p53 pathway in the bone marrow hematopoietic stem/progenitor compartment facilitates leukemia progression in experimental mice.
    Chatterjee R; Chattopadhyay S; Law S
    Leuk Res; 2016 Aug; 47():70-7. PubMed ID: 27280487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Osteoclasts take part in modulation for bone marrow hematopoietic microenvironment--review].
    Zhu H; Jiang XX; Mao N
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2007 Dec; 15(6):1312-6. PubMed ID: 18088492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hematopoietic Stem Cell and Its Bone Marrow Niche.
    Yu VW; Scadden DT
    Curr Top Dev Biol; 2016; 118():21-44. PubMed ID: 27137653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.