These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 20541061)
41. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse. Song L; McGee J; Walsh EJ J Neurophysiol; 2008 Jan; 99(1):344-55. PubMed ID: 17989242 [TBL] [Abstract][Full Text] [Related]
43. A model of the effect of outer hair cell motility on cochlear vibrations. Geisler CD Hear Res; 1986; 24(2):125-31. PubMed ID: 3771375 [TBL] [Abstract][Full Text] [Related]
45. Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae. He W; Kemp D; Ren T Elife; 2018 Sep; 7():. PubMed ID: 30183615 [TBL] [Abstract][Full Text] [Related]
46. The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane. Russell IJ; Nilsen KE Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2660-4. PubMed ID: 9122252 [TBL] [Abstract][Full Text] [Related]
48. A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. Ashmore JF J Physiol; 1987 Jul; 388():323-47. PubMed ID: 3656195 [TBL] [Abstract][Full Text] [Related]
49. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636 [TBL] [Abstract][Full Text] [Related]
50. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes. Cormack J; Liu Y; Nam JH; Gracewski SM J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927 [TBL] [Abstract][Full Text] [Related]
51. The tectorial membrane in the theory of hearing; the significance of the insertion of the tectorial membrane in the transmission of sound vibrations to the hair cells and a theory of the mechanïsm of tone location in the cochlea. HILDING AC Ann Otol Rhinol Laryngol; 1953 Sep; 62(3):757-69. PubMed ID: 13092765 [No Abstract] [Full Text] [Related]
52. In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Manley GA; Kirk DL; Köppl C; Yates GK Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2826-31. PubMed ID: 11226325 [TBL] [Abstract][Full Text] [Related]
55. A hardware cochlear nonlinear preprocessing model with active feedback. Zwicker E J Acoust Soc Am; 1986 Jul; 80(1):146-53. PubMed ID: 3745660 [TBL] [Abstract][Full Text] [Related]
56. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra. Lai J; Bartlett EL Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530 [TBL] [Abstract][Full Text] [Related]
57. Towards understanding the specifics of cochlear hearing loss: a modelling approach. Stenfelt S Int J Audiol; 2008 Nov; 47 Suppl 2():S10-5. PubMed ID: 19012107 [TBL] [Abstract][Full Text] [Related]
58. What type of force does the cochlear amplifier produce? Kolston PJ; de Boer E; Viergever MA; Smoorenburg GF J Acoust Soc Am; 1990 Oct; 88(4):1794-801. PubMed ID: 2262635 [TBL] [Abstract][Full Text] [Related]
59. Two types of cochlear hair cells with two different modes of activation are better than one. Sohmer H J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):1-3. PubMed ID: 22865443 [TBL] [Abstract][Full Text] [Related]
60. Limiting frequency of the cochlear amplifier based on electromotility of outer hair cells. Ospeck M; Dong XX; Iwasa KH Biophys J; 2003 Feb; 84(2 Pt 1):739-49. PubMed ID: 12547758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]