These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 20541119)
1. Cloning and characterization of clpB in Acetobacter pasteurianus NBRC 3283. Ishikawa M; Okamoto-Kainuma A; Matsui K; Takigishi A; Kaga T; Koizumi Y J Biosci Bioeng; 2010 Jul; 110(1):69-71. PubMed ID: 20541119 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of grpE in Acetobacter pasteurianus NBRC 3283. Ishikawa M; Okamoto-Kainuma A; Jochi T; Suzuki I; Matsui K; Kaga T; Koizumi Y J Biosci Bioeng; 2010 Jan; 109(1):25-31. PubMed ID: 20129077 [TBL] [Abstract][Full Text] [Related]
3. Characterization of rpoH in Acetobacter pasteurianus NBRC3283. Okamoto-Kainuma A; Ishikawa M; Nakamura H; Fukazawa S; Tanaka N; Yamagami K; Koizumi Y J Biosci Bioeng; 2011 Apr; 111(4):429-32. PubMed ID: 21239225 [TBL] [Abstract][Full Text] [Related]
4. Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Kanchanarach W; Theeragool G; Yakushi T; Toyama H; Adachi O; Matsushita K Appl Microbiol Biotechnol; 2010 Jan; 85(3):741-51. PubMed ID: 19711069 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen peroxide resistance of Acetobacter pasteurianus NBRC3283 and its relationship to acetic acid fermentation. Okamoto-Kainuma A; Ehata Y; Ikeda M; Osono T; Ishikawa M; Kaga T; Koizumi Y Biosci Biotechnol Biochem; 2008 Oct; 72(10):2526-34. PubMed ID: 18838821 [TBL] [Abstract][Full Text] [Related]
6. Comparative Genomic Analysis of Closely Related Matsutani M; Matsumoto N; Hirakawa H; Shiwa Y; Yoshikawa H; Okamoto-Kainuma A; Ishikawa M; Kataoka N; Yakushi T; Matsushita K J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 32015144 [No Abstract] [Full Text] [Related]
7. Characterization of Brucella suis clpB and clpAB mutants and participation of the genes in stress responses. Ekaza E; Teyssier J; Ouahrani-Bettache S; Liautard JP; Köhler S J Bacteriol; 2001 Apr; 183(8):2677-81. PubMed ID: 11274130 [TBL] [Abstract][Full Text] [Related]
8. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions. Zheng Y; Zhang R; Yin H; Bai X; Chang Y; Xia M; Wang M Appl Microbiol Biotechnol; 2017 Sep; 101(18):7007-7016. PubMed ID: 28770302 [TBL] [Abstract][Full Text] [Related]
9. Analysis of replication region of the cryptic plasmid pAG20 from Acetobacter aceti 3620. Kretová M; Szemes T; Laco J; Gronesová P; Grones J Biochem Biophys Res Commun; 2005 Mar; 328(1):27-31. PubMed ID: 15670745 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide phylogenetic analysis of differences in thermotolerance among closely related Acetobacter pasteurianus strains. Matsutani M; Hirakawa H; Saichana N; Soemphol W; Yakushi T; Matsushita K Microbiology (Reading); 2012 Jan; 158(Pt 1):229-239. PubMed ID: 22016572 [TBL] [Abstract][Full Text] [Related]
12. Pellicle of thermotolerant Acetobacter pasteurianus strains: characterization of the polysaccharides and of the induction patterns. Perumpuli PA; Watanabe T; Toyama H J Biosci Bioeng; 2014 Aug; 118(2):134-8. PubMed ID: 24559734 [TBL] [Abstract][Full Text] [Related]
13. Genomic characterization provides genetic evidence for bacterial cellulose synthesis by Acetobacter pasteurianus RSV-4 strain. Thakur K; Kumar V; Kumar V; Yadav SK Int J Biol Macromol; 2020 Aug; 156():598-607. PubMed ID: 32305370 [TBL] [Abstract][Full Text] [Related]
14. Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA. Zheng Y; Wang J; Bai X; Chang Y; Mou J; Song J; Wang M Appl Microbiol Biotechnol; 2018 Aug; 102(15):6493-6502. PubMed ID: 29785501 [TBL] [Abstract][Full Text] [Related]
15. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Meibom KL; Dubail I; Dupuis M; Barel M; Lenco J; Stulik J; Golovliov I; Sjöstedt A; Charbit A Mol Microbiol; 2008 Mar; 67(6):1384-401. PubMed ID: 18284578 [TBL] [Abstract][Full Text] [Related]
16. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. Kanchanarach W; Theeragool G; Inoue T; Yakushi T; Adachi O; Matsushita K Biosci Biotechnol Biochem; 2010; 74(8):1591-7. PubMed ID: 20699583 [TBL] [Abstract][Full Text] [Related]
17. Pyruvate decarboxylase: a key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Chandra Raj K; Ingram LO; Maupin-Furlow JA Arch Microbiol; 2001 Dec; 176(6):443-51. PubMed ID: 11734888 [TBL] [Abstract][Full Text] [Related]
18. Two-stage oxygen supply strategy based on energy metabolism analysis for improving acetic acid production by Acetobacter pasteurianus. Zheng Y; Chang Y; Zhang R; Song J; Xu Y; Liu J; Wang M J Ind Microbiol Biotechnol; 2018 Sep; 45(9):781-788. PubMed ID: 30008048 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the replicon from plasmid pAC1 from Acetobacter pasteurianus. Grones J; Králová A; Turna J Biochem Biophys Res Commun; 1993 Feb; 191(1):26-31. PubMed ID: 8447828 [TBL] [Abstract][Full Text] [Related]
20. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Nakano S; Fukaya M; Horinouchi S Appl Environ Microbiol; 2006 Jan; 72(1):497-505. PubMed ID: 16391084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]