These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 20541125)
1. Evolutionary adaptation of recombinant shochu yeast for improved xylose utilization. Matsushika A; Oguri E; Sawayama S J Biosci Bioeng; 2010 Jul; 110(1):102-5. PubMed ID: 20541125 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. Kuyper M; Toirkens MJ; Diderich JA; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2005 Jul; 5(10):925-34. PubMed ID: 15949975 [TBL] [Abstract][Full Text] [Related]
3. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. Kuyper M; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955 [TBL] [Abstract][Full Text] [Related]
4. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Martín C; Marcet M; Almazán O; Jönsson LJ Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451 [TBL] [Abstract][Full Text] [Related]
5. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
6. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745 [TBL] [Abstract][Full Text] [Related]
8. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606 [TBL] [Abstract][Full Text] [Related]
9. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Roca C; Olsson L Appl Microbiol Biotechnol; 2003 Jan; 60(5):560-3. PubMed ID: 12536256 [TBL] [Abstract][Full Text] [Related]
18. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Bengtsson O; Jeppsson M; Sonderegger M; Parachin NS; Sauer U; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2008 Nov; 25(11):835-47. PubMed ID: 19061191 [TBL] [Abstract][Full Text] [Related]
19. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
20. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. Attfield PV; Bell PJ FEMS Yeast Res; 2006 Sep; 6(6):862-8. PubMed ID: 16911508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]