BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 205412)

  • 1. The influence of exogenous and of membrane-bound phosphatidate concentration on the activity of CTP: phosphatidate cytidylyltransferase and phosphatidate phosphohydrolase.
    van Heusden GP; van den Bosch H
    Eur J Biochem; 1978 Mar; 84(2):405-12. PubMed ID: 205412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors controlling the activities of phosphatidate phosphohydrolase and phosphatidate cytidylyltransferase. The effects of chlorpromazine, demethylimipramine, cinchocaine, norfenfluramine, mepyramine and magnesium ions.
    Sturton RG; Brindley DN
    Biochem J; 1977 Jan; 162(1):25-32. PubMed ID: 192211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of molecular species of CDP-diglyceride from endogenously-labeled phosphatidate in rat liver microsomes.
    Holub BJ; Piekarski J
    Lipids; 1976 Apr; 11(4):251-7. PubMed ID: 1263770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of amphiphilic compounds on phosphatidate metabolism.
    Brindley DN; Bowley M; Sturton RG; Pritchard PH; Cooling J; Burditt SL
    Adv Exp Med Biol; 1978; 101():227-34. PubMed ID: 208356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stimulation of rat liver microsomal CTP: phosphatidate cytidylyltransferase activity by guanosine triphosphate.
    Liteplo RG; Sribney M
    Biochim Biophys Acta; 1980 Sep; 619(3):660-8. PubMed ID: 6257301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stimulation of rat liver microsomal CDP-diacylglycerol formation by guanosine triphosphate.
    Liteplo RG; Sribney M
    Can J Biochem; 1980 Oct; 58(10):871-7. PubMed ID: 6257345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors controlling the metabolism of phosphatidate by phosphohydrolase and phospholipase A-type activities. Effects of magnesium, calcium and amphiphilic cationic drugs.
    Sturton RG; Brindley DN
    Biochim Biophys Acta; 1980 Sep; 619(3):494-505. PubMed ID: 6257299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of rat liver microsomal diglyceride acyltransferase and cholinephosphotransferase using microsomal-bound substrate: effects of high fructose intake.
    Fallon HJ; Barwick J; Lamb RG; van den Bosch H
    J Lipid Res; 1975 Mar; 16(2):107-15. PubMed ID: 165251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the HPLC-separated species patterns of phosphatidic acid, CDP-diacylglycerol and diacylglycerol synthesized de novo in rat liver microsomes (a new method).
    Rüstow B; Nakagawa Y; Rabe H; Reichmann G; Kunze D; Waku K
    Biochim Biophys Acta; 1988 Aug; 961(3):364-9. PubMed ID: 2840968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chlorpromazine on the synthesis, hydrolysis, and transfer of microsomal cytidine liponucleotides and mitochondrial polyglycerophosphatides.
    Stuhne-Sekalec L; Chudzik J; Stanacev NZ
    Can J Physiol Pharmacol; 1987 Mar; 65(3):377-84. PubMed ID: 3580960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary phosphatidic acid phosphatase. A comparative study of the aqueously dispersed phosphatidate-dependent and membrane-bound phosphatidate-dependent phosphatidic acid phosphatase activities of rat lung.
    Yeung A; Casola PG; Wong C; Fellows JF; Possmayer F
    Biochim Biophys Acta; 1979 Aug; 574(2):226-39. PubMed ID: 226152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in CTP:phosphatidate cytidylyltransferase activity during rabbit lung development.
    Longmuir KJ; Johnston JM
    Biochim Biophys Acta; 1980 Dec; 620(3):500-8. PubMed ID: 6113006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the formation by rat brain preparations of CDP-diglyceride from CTP and phosphatidic acids of varying fatty acid compositions.
    Bishop HH; Strickland KP
    Can J Biochem; 1976 Mar; 54(3):249-60. PubMed ID: 4204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered subcellular and submitochondrial localization of CTP:phosphatidate cytidylyltransferase in the Morris 7777 hepatoma.
    Hostetler KY; Zenner BD; Morris HP
    J Lipid Res; 1978 Jul; 19(5):553-60. PubMed ID: 209110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary surfactant synthesis. A highly active microsomal phosphatidate phosphohydrolase in the lung.
    Mavis RD; Finkelstein JN; Hall BP
    J Lipid Res; 1978 May; 19(4):467-77. PubMed ID: 207801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation to rat liver mitochondria of phosphatidate phosphohydrolase.
    Freeman M; Mangiapane EH
    Biochem J; 1989 Oct; 263(2):589-95. PubMed ID: 2557000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid hydrolysis of diacylglycerol formed during phosphatidate phosphatase assay by lipase activities in rat liver cytosol and microsomes.
    Ide H; Nakazawa Y
    Arch Biochem Biophys; 1989 May; 271(1):177-87. PubMed ID: 2540711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of spermine on the translocation of Mg2+-dependent phosphatidate phosphohydrolase.
    Jamdar SC; Osborne LJ; Wells GN; Cohen GM
    Biochim Biophys Acta; 1987 Feb; 917(3):381-7. PubMed ID: 3026488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary phosphatidic acid phosphatase. Properties of membrane-bound phosphatidate-dependent phosphatidic acid phosphatase in rat lung.
    Casola PG; Possmayer F
    Biochim Biophys Acta; 1979 Aug; 574(2):212-25. PubMed ID: 226151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the displacement of phosphatidate phosphohydrolase from the membrane-associated compartment by chlorpromazine and the inhibition of the synthesis of triacylglycerol and phosphatidylcholine in rat hepatocytes.
    Martin A; Hopewell R; Martín-Sanz P; Morgan JE; Brindley DN
    Biochim Biophys Acta; 1986 May; 876(3):581-91. PubMed ID: 3011104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.