These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20541796)

  • 1. Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus.
    Ballyns JJ; Wright TM; Bonassar LJ
    Biomaterials; 2010 Sep; 31(26):6756-63. PubMed ID: 20541796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of IGF-I on anatomically shaped tissue-engineered menisci.
    Puetzer JL; Brown BN; Ballyns JJ; Bonassar LJ
    Tissue Eng Part A; 2013 Jun; 19(11-12):1443-50. PubMed ID: 23360441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the duration of mechanical stimulation and post-stimulation culture on the structure and properties of dynamically compressed tissue-engineered menisci.
    Puetzer JL; Ballyns JJ; Bonassar LJ
    Tissue Eng Part A; 2012 Jul; 18(13-14):1365-75. PubMed ID: 22429287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic compressive loading of image-guided tissue engineered meniscal constructs.
    Ballyns JJ; Bonassar LJ
    J Biomech; 2011 Feb; 44(3):509-16. PubMed ID: 20888562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs.
    Huey DJ; Athanasiou KA
    PLoS One; 2011; 6(11):e27857. PubMed ID: 22114714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring.
    Puetzer JL; Koo E; Bonassar LJ
    J Biomech; 2015 Jun; 48(8):1436-43. PubMed ID: 25770753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber development and matrix production in tissue-engineered menisci using bovine mesenchymal stem cells and fibrochondrocytes.
    McCorry MC; Bonassar LJ
    Connect Tissue Res; 2017; 58(3-4):329-341. PubMed ID: 27925474
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Nims RJ; Cigan AD; Durney KM; Jones BK; O'Neill JD; Law WA; Vunjak-Novakovic G; Hung CT; Ateshian GA
    Tissue Eng Part A; 2017 Aug; 23(15-16):847-858. PubMed ID: 28193145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model system for developing a tissue engineered meniscal enthesis.
    McCorry MC; Mansfield MM; Sha X; Coppola DJ; Lee JW; Bonassar LJ
    Acta Biomater; 2017 Jul; 56():110-117. PubMed ID: 27989921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.
    Parenteau-Bareil R; Gauvin R; Cliche S; GariƩpy C; Germain L; Berthod F
    Acta Biomater; 2011 Oct; 7(10):3757-65. PubMed ID: 21723967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building an anisotropic meniscus with zonal variations.
    Higashioka MM; Chen JA; Hu JC; Athanasiou KA
    Tissue Eng Part A; 2014 Jan; 20(1-2):294-302. PubMed ID: 23931258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue engineering with meniscus cells derived from surgical debris.
    Baker BM; Nathan AS; Huffman GR; Mauck RL
    Osteoarthritis Cartilage; 2009 Mar; 17(3):336-45. PubMed ID: 18848784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compaction enhances extracellular matrix content and mechanical properties of tissue-engineered cartilaginous constructs.
    Han EH; Ge C; Chen AC; Schumacher BL; Sah RL
    Tissue Eng Part A; 2012 Jun; 18(11-12):1151-60. PubMed ID: 22372815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds.
    Neves AA; Medcalf N; Brindle KM
    Biomaterials; 2005 Aug; 26(23):4828-36. PubMed ID: 15763262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.
    Puetzer JL; Bonassar LJ
    Tissue Eng Part A; 2016 Jul; 22(13-14):907-16. PubMed ID: 27245484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage.
    Ng KW; Kugler LE; Doty SB; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2009 Feb; 17(2):220-7. PubMed ID: 18801665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrocytes and meniscal fibrochondrocytes differentially process aggrecan during de novo extracellular matrix assembly.
    Wilson CG; Nishimuta JF; Levenston ME
    Tissue Eng Part A; 2009 Jul; 15(7):1513-22. PubMed ID: 19260779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High density type I collagen gels for tissue engineering of whole menisci.
    Puetzer JL; Bonassar LJ
    Acta Biomater; 2013 Aug; 9(8):7787-95. PubMed ID: 23669622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel.
    Baek J; Chen X; Sovani S; Jin S; Grogan SP; D'Lima DD
    J Orthop Res; 2015 Apr; 33(4):572-83. PubMed ID: 25640671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nanofiber alignment on the maturation of engineered meniscus constructs.
    Baker BM; Mauck RL
    Biomaterials; 2007 Apr; 28(11):1967-77. PubMed ID: 17250888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.