BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 20542314)

  • 21. Water extractable organic carbon in untreated and chemical treated biochars.
    Lin Y; Munroe P; Joseph S; Henderson R; Ziolkowski A
    Chemosphere; 2012 Apr; 87(2):151-7. PubMed ID: 22236590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilization of pentachlorophenol in soil using carbonaceous material amendments.
    Wen B; Li RJ; Zhang S; Shan XQ; Fang J; Xiao K; Khan SU
    Environ Pollut; 2009 Mar; 157(3):968-74. PubMed ID: 19028411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature.
    Bian R; Joseph S; Shi W; Li L; Taherymoosavi S; Pan G
    Sci Total Environ; 2019 Apr; 662():571-580. PubMed ID: 30699377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment.
    Sun K; Gao B; Ro KS; Novak JM; Wang Z; Herbert S; Xing B
    Environ Pollut; 2012 Apr; 163():167-73. PubMed ID: 22325445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil.
    de la Fuente C; Clemente R; Bernal MP
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):207-15. PubMed ID: 17659778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the complexation behaviors of Cu(II) with DOM from sludge-based biochars and agricultural soil: Effect of pyrolysis temperature.
    Xing J; Xu G; Li G
    Chemosphere; 2020 Jul; 250():126184. PubMed ID: 32105854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal sorption and desorption capacity of soils containing endogenous contaminants.
    Covelo EF; Vega FA; Andrade ML
    J Hazard Mater; 2007 May; 143(1-2):419-30. PubMed ID: 17092646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences.
    Covelo EF; Vega FA; Andrade ML
    J Hazard Mater; 2007 Aug; 147(3):852-61. PubMed ID: 17346879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.
    Udeigwe TK; Eze PN; Teboh JM; Stietiya MH
    Environ Int; 2011 Jan; 37(1):258-67. PubMed ID: 20832118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil.
    Antoniadis V; Tsadilas CD; Ashworth DJ
    Chemosphere; 2007 Jun; 68(3):489-94. PubMed ID: 17276490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars).
    Kasozi GN; Zimmerman AR; Nkedi-Kizza P; Gao B
    Environ Sci Technol; 2010 Aug; 44(16):6189-95. PubMed ID: 20669904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reclamation of a mine contaminated soil using biologically reactive organic matrices.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G
    Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remediation of metal contaminated soil with mineral-amended composts.
    van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK
    Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil.
    Rajapaksha AU; Ahmad M; Vithanage M; Kim KR; Chang JY; Lee SS; Ok YS
    Environ Geochem Health; 2015 Dec; 37(6):931-42. PubMed ID: 25794596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil.
    Gusiatin ZM; Kurkowski R; Brym S; Wiśniewski D
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21249-21261. PubMed ID: 27495921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments.
    Mench M; Renella G; Gelsomino A; Landi L; Nannipieri P
    Environ Pollut; 2006 Nov; 144(1):24-31. PubMed ID: 16516362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of biochar on mine tailings: effects and perspectives for land reclamation.
    Fellet G; Marchiol L; Delle Vedove G; Peressotti A
    Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment.
    Meng J; Wang L; Liu X; Wu J; Brookes PC; Xu J
    Bioresour Technol; 2013 Aug; 142():641-6. PubMed ID: 23774223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar.
    Cao X; Ma L; Liang Y; Gao B; Harris W
    Environ Sci Technol; 2011 Jun; 45(11):4884-9. PubMed ID: 21542567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.